Module « pandas »
Signature de la fonction lreshape
def lreshape(data: 'DataFrame', groups, dropna: bool = True, label=None) -> 'DataFrame'
Description
lreshape.__doc__
Reshape wide-format data to long. Generalized inverse of DataFrame.pivot.
Accepts a dictionary, ``groups``, in which each key is a new column name
and each value is a list of old column names that will be "melted" under
the new column name as part of the reshape.
Parameters
----------
data : DataFrame
The wide-format DataFrame.
groups : dict
{new_name : list_of_columns}.
dropna : bool, default True
Do not include columns whose entries are all NaN.
label : None
Not used.
.. deprecated:: 1.0.0
Returns
-------
DataFrame
Reshaped DataFrame.
See Also
--------
melt : Unpivot a DataFrame from wide to long format, optionally leaving
identifiers set.
pivot : Create a spreadsheet-style pivot table as a DataFrame.
DataFrame.pivot : Pivot without aggregation that can handle
non-numeric data.
DataFrame.pivot_table : Generalization of pivot that can handle
duplicate values for one index/column pair.
DataFrame.unstack : Pivot based on the index values instead of a
column.
wide_to_long : Wide panel to long format. Less flexible but more
user-friendly than melt.
Examples
--------
>>> data = pd.DataFrame({'hr1': [514, 573], 'hr2': [545, 526],
... 'team': ['Red Sox', 'Yankees'],
... 'year1': [2007, 2007], 'year2': [2008, 2008]})
>>> data
hr1 hr2 team year1 year2
0 514 545 Red Sox 2007 2008
1 573 526 Yankees 2007 2008
>>> pd.lreshape(data, {'year': ['year1', 'year2'], 'hr': ['hr1', 'hr2']})
team year hr
0 Red Sox 2007 514
1 Yankees 2007 573
2 Red Sox 2008 545
3 Yankees 2008 526
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :