Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « Index »

Méthode pandas.Index.duplicated

Signature de la méthode duplicated

def duplicated(self, keep='first') 

Description

duplicated.__doc__

        Indicate duplicate index values.

        Duplicated values are indicated as ``True`` values in the resulting
        array. Either all duplicates, all except the first, or all except the
        last occurrence of duplicates can be indicated.

        Parameters
        ----------
        keep : {'first', 'last', False}, default 'first'
            The value or values in a set of duplicates to mark as missing.

            - 'first' : Mark duplicates as ``True`` except for the first
              occurrence.
            - 'last' : Mark duplicates as ``True`` except for the last
              occurrence.
            - ``False`` : Mark all duplicates as ``True``.

        Returns
        -------
        numpy.ndarray

        See Also
        --------
        Series.duplicated : Equivalent method on pandas.Series.
        DataFrame.duplicated : Equivalent method on pandas.DataFrame.
        Index.drop_duplicates : Remove duplicate values from Index.

        Examples
        --------
        By default, for each set of duplicated values, the first occurrence is
        set to False and all others to True:

        >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama'])
        >>> idx.duplicated()
        array([False, False,  True, False,  True])

        which is equivalent to

        >>> idx.duplicated(keep='first')
        array([False, False,  True, False,  True])

        By using 'last', the last occurrence of each set of duplicated values
        is set on False and all others on True:

        >>> idx.duplicated(keep='last')
        array([ True, False,  True, False, False])

        By setting keep on ``False``, all duplicates are True:

        >>> idx.duplicated(keep=False)
        array([ True, False,  True, False,  True])