Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « Index »

Méthode pandas.Index.isin

Signature de la méthode isin

def isin(self, values, level=None) 

Description

isin.__doc__

        Return a boolean array where the index values are in `values`.

        Compute boolean array of whether each index value is found in the
        passed set of values. The length of the returned boolean array matches
        the length of the index.

        Parameters
        ----------
        values : set or list-like
            Sought values.
        level : str or int, optional
            Name or position of the index level to use (if the index is a
            `MultiIndex`).

        Returns
        -------
        is_contained : ndarray
            NumPy array of boolean values.

        See Also
        --------
        Series.isin : Same for Series.
        DataFrame.isin : Same method for DataFrames.

        Notes
        -----
        In the case of `MultiIndex` you must either specify `values` as a
        list-like object containing tuples that are the same length as the
        number of levels, or specify `level`. Otherwise it will raise a
        ``ValueError``.

        If `level` is specified:

        - if it is the name of one *and only one* index level, use that level;
        - otherwise it should be a number indicating level position.

        Examples
        --------
        >>> idx = pd.Index([1,2,3])
        >>> idx
        Int64Index([1, 2, 3], dtype='int64')

        Check whether each index value in a list of values.

        >>> idx.isin([1, 4])
        array([ True, False, False])

        >>> midx = pd.MultiIndex.from_arrays([[1,2,3],
        ...                                  ['red', 'blue', 'green']],
        ...                                  names=('number', 'color'))
        >>> midx
        MultiIndex([(1,   'red'),
                    (2,  'blue'),
                    (3, 'green')],
                   names=['number', 'color'])

        Check whether the strings in the 'color' level of the MultiIndex
        are in a list of colors.

        >>> midx.isin(['red', 'orange', 'yellow'], level='color')
        array([ True, False, False])

        To check across the levels of a MultiIndex, pass a list of tuples:

        >>> midx.isin([(1, 'red'), (3, 'red')])
        array([ True, False, False])

        For a DatetimeIndex, string values in `values` are converted to
        Timestamps.

        >>> dates = ['2000-03-11', '2000-03-12', '2000-03-13']
        >>> dti = pd.to_datetime(dates)
        >>> dti
        DatetimeIndex(['2000-03-11', '2000-03-12', '2000-03-13'],
        dtype='datetime64[ns]', freq=None)

        >>> dti.isin(['2000-03-11'])
        array([ True, False, False])