Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « Index »

Méthode pandas.Index.shift

Signature de la méthode shift

def shift(self, periods=1, freq=None) 

Description

shift.__doc__

        Shift index by desired number of time frequency increments.

        This method is for shifting the values of datetime-like indexes
        by a specified time increment a given number of times.

        Parameters
        ----------
        periods : int, default 1
            Number of periods (or increments) to shift by,
            can be positive or negative.
        freq : pandas.DateOffset, pandas.Timedelta or str, optional
            Frequency increment to shift by.
            If None, the index is shifted by its own `freq` attribute.
            Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc.

        Returns
        -------
        pandas.Index
            Shifted index.

        See Also
        --------
        Series.shift : Shift values of Series.

        Notes
        -----
        This method is only implemented for datetime-like index classes,
        i.e., DatetimeIndex, PeriodIndex and TimedeltaIndex.

        Examples
        --------
        Put the first 5 month starts of 2011 into an index.

        >>> month_starts = pd.date_range('1/1/2011', periods=5, freq='MS')
        >>> month_starts
        DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01',
                       '2011-05-01'],
                      dtype='datetime64[ns]', freq='MS')

        Shift the index by 10 days.

        >>> month_starts.shift(10, freq='D')
        DatetimeIndex(['2011-01-11', '2011-02-11', '2011-03-11', '2011-04-11',
                       '2011-05-11'],
                      dtype='datetime64[ns]', freq=None)

        The default value of `freq` is the `freq` attribute of the index,
        which is 'MS' (month start) in this example.

        >>> month_starts.shift(10)
        DatetimeIndex(['2011-11-01', '2011-12-01', '2012-01-01', '2012-02-01',
                       '2012-03-01'],
                      dtype='datetime64[ns]', freq='MS')