Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé
Classe « DataFrame »

Méthode pandas.DataFrame.mod

Signature de la méthode mod

def mod(self, other, axis: 'Axis' = 'columns', level=None, fill_value=None) -> 'DataFrame' 

Description

help(DataFrame.mod)

Get Modulo of dataframe and other, element-wise (binary operator `mod`).

Equivalent to ``dataframe % other``, but with support to substitute a fill_value
for missing data in one of the inputs. With reverse version, `rmod`.

Among flexible wrappers (`add`, `sub`, `mul`, `div`, `floordiv`, `mod`, `pow`) to
arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`.

Parameters
----------
other : scalar, sequence, Series, dict or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}
    Whether to compare by the index (0 or 'index') or columns.
    (1 or 'columns'). For Series input, axis to match Series index on.
level : int or label
    Broadcast across a level, matching Index values on the
    passed MultiIndex level.
fill_value : float or None, default None
    Fill existing missing (NaN) values, and any new element needed for
    successful DataFrame alignment, with this value before computation.
    If data in both corresponding DataFrame locations is missing
    the result will be missing.

Returns
-------
DataFrame
    Result of the arithmetic operation.

See Also
--------
DataFrame.add : Add DataFrames.
DataFrame.sub : Subtract DataFrames.
DataFrame.mul : Multiply DataFrames.
DataFrame.div : Divide DataFrames (float division).
DataFrame.truediv : Divide DataFrames (float division).
DataFrame.floordiv : Divide DataFrames (integer division).
DataFrame.mod : Calculate modulo (remainder after division).
DataFrame.pow : Calculate exponential power.

Notes
-----
Mismatched indices will be unioned together.

Examples
--------
>>> df = pd.DataFrame({'angles': [0, 3, 4],
...                    'degrees': [360, 180, 360]},
...                   index=['circle', 'triangle', 'rectangle'])
>>> df
           angles  degrees
circle          0      360
triangle        3      180
rectangle       4      360

Add a scalar with operator version which return the same
results.

>>> df + 1
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

>>> df.add(1)
           angles  degrees
circle          1      361
triangle        4      181
rectangle       5      361

Divide by constant with reverse version.

>>> df.div(10)
           angles  degrees
circle        0.0     36.0
triangle      0.3     18.0
rectangle     0.4     36.0

>>> df.rdiv(10)
             angles   degrees
circle          inf  0.027778
triangle   3.333333  0.055556
rectangle  2.500000  0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2]
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub([1, 2], axis='columns')
           angles  degrees
circle         -1      358
triangle        2      178
rectangle       3      358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
...        axis='index')
           angles  degrees
circle         -1      359
triangle        2      179
rectangle       3      359

Multiply a dictionary by axis.

>>> df.mul({'angles': 0, 'degrees': 2})
            angles  degrees
circle           0      720
triangle         0      360
rectangle        0      720

>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index')
            angles  degrees
circle           0        0
triangle         6      360
rectangle       12     1080

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]},
...                      index=['circle', 'triangle', 'rectangle'])
>>> other
           angles
circle          0
triangle        3
rectangle       4

>>> df * other
           angles  degrees
circle          0      NaN
triangle        9      NaN
rectangle      16      NaN

>>> df.mul(other, fill_value=0)
           angles  degrees
circle          0      0.0
triangle        9      0.0
rectangle      16      0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6],
...                              'degrees': [360, 180, 360, 360, 540, 720]},
...                             index=[['A', 'A', 'A', 'B', 'B', 'B'],
...                                    ['circle', 'triangle', 'rectangle',
...                                     'square', 'pentagon', 'hexagon']])
>>> df_multindex
             angles  degrees
A circle          0      360
  triangle        3      180
  rectangle       4      360
B square          4      360
  pentagon        5      540
  hexagon         6      720

>>> df.div(df_multindex, level=1, fill_value=0)
             angles  degrees
A circle        NaN      1.0
  triangle      1.0      1.0
  rectangle     1.0      1.0
B square        0.0      0.0
  pentagon      0.0      0.0
  hexagon       0.0      0.0


Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé