Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les compléments
Voir le programme détaillé
Classe « DataFrame »
Signature de la méthode to_orc
def to_orc(self, path: 'FilePath | WriteBuffer[bytes] | None' = None, *, engine: "Literal['pyarrow']" = 'pyarrow', index: 'bool | None' = None, engine_kwargs: 'dict[str, Any] | None' = None) -> 'bytes | None'
Description
help(DataFrame.to_orc)
Write a DataFrame to the ORC format.
.. versionadded:: 1.5.0
Parameters
----------
path : str, file-like object or None, default None
If a string, it will be used as Root Directory path
when writing a partitioned dataset. By file-like object,
we refer to objects with a write() method, such as a file handle
(e.g. via builtin open function). If path is None,
a bytes object is returned.
engine : {'pyarrow'}, default 'pyarrow'
ORC library to use.
index : bool, optional
If ``True``, include the dataframe's index(es) in the file output.
If ``False``, they will not be written to the file.
If ``None``, similar to ``infer`` the dataframe's index(es)
will be saved. However, instead of being saved as values,
the RangeIndex will be stored as a range in the metadata so it
doesn't require much space and is faster. Other indexes will
be included as columns in the file output.
engine_kwargs : dict[str, Any] or None, default None
Additional keyword arguments passed to :func:`pyarrow.orc.write_table`.
Returns
-------
bytes if no path argument is provided else None
Raises
------
NotImplementedError
Dtype of one or more columns is category, unsigned integers, interval,
period or sparse.
ValueError
engine is not pyarrow.
See Also
--------
read_orc : Read a ORC file.
DataFrame.to_parquet : Write a parquet file.
DataFrame.to_csv : Write a csv file.
DataFrame.to_sql : Write to a sql table.
DataFrame.to_hdf : Write to hdf.
Notes
-----
* Before using this function you should read the :ref:`user guide about
ORC <io.orc>` and :ref:`install optional dependencies <install.warn_orc>`.
* This function requires `pyarrow <https://arrow.apache.org/docs/python/>`_
library.
* For supported dtypes please refer to `supported ORC features in Arrow
<https://arrow.apache.org/docs/cpp/orc.html#data-types>`__.
* Currently timezones in datetime columns are not preserved when a
dataframe is converted into ORC files.
Examples
--------
>>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [4, 3]})
>>> df.to_orc('df.orc') # doctest: +SKIP
>>> pd.read_orc('df.orc') # doctest: +SKIP
col1 col2
0 1 4
1 2 3
If you want to get a buffer to the orc content you can write it to io.BytesIO
>>> import io
>>> b = io.BytesIO(df.to_orc()) # doctest: +SKIP
>>> b.seek(0) # doctest: +SKIP
0
>>> content = b.read() # doctest: +SKIP
Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :