 
	
		Vous êtes un professionnel et vous avez besoin d'une formation ?
		Sensibilisation àl'Intelligence Artificielle
		Voir le programme détaillé	
	
	
    
            Classe « DataFrame »
            
            
Signature de la méthode  compare 
def compare(self, other: 'DataFrame', align_axis: 'Axis' = 1, keep_shape: 'bool' = False, keep_equal: 'bool' = False, result_names: 'Suffixes' = ('self', 'other')) -> 'DataFrame' 
Description
help(DataFrame.compare)
Compare to another DataFrame and show the differences.
Parameters
----------
other : DataFrame
    Object to compare with.
align_axis : {0 or 'index', 1 or 'columns'}, default 1
    Determine which axis to align the comparison on.
    * 0, or 'index' : Resulting differences are stacked vertically
        with rows drawn alternately from self and other.
    * 1, or 'columns' : Resulting differences are aligned horizontally
        with columns drawn alternately from self and other.
keep_shape : bool, default False
    If true, all rows and columns are kept.
    Otherwise, only the ones with different values are kept.
keep_equal : bool, default False
    If true, the result keeps values that are equal.
    Otherwise, equal values are shown as NaNs.
result_names : tuple, default ('self', 'other')
    Set the dataframes names in the comparison.
    .. versionadded:: 1.5.0
Returns
-------
DataFrame
    DataFrame that shows the differences stacked side by side.
    The resulting index will be a MultiIndex with 'self' and 'other'
    stacked alternately at the inner level.
Raises
------
ValueError
    When the two DataFrames don't have identical labels or shape.
See Also
--------
Series.compare : Compare with another Series and show differences.
DataFrame.equals : Test whether two objects contain the same elements.
Notes
-----
Matching NaNs will not appear as a difference.
Can only compare identically-labeled
(i.e. same shape, identical row and column labels) DataFrames
Examples
--------
>>> df = pd.DataFrame(
...     {
...         "col1": ["a", "a", "b", "b", "a"],
...         "col2": [1.0, 2.0, 3.0, np.nan, 5.0],
...         "col3": [1.0, 2.0, 3.0, 4.0, 5.0]
...     },
...     columns=["col1", "col2", "col3"],
... )
>>> df
  col1  col2  col3
0    a   1.0   1.0
1    a   2.0   2.0
2    b   3.0   3.0
3    b   NaN   4.0
4    a   5.0   5.0
>>> df2 = df.copy()
>>> df2.loc[0, 'col1'] = 'c'
>>> df2.loc[2, 'col3'] = 4.0
>>> df2
  col1  col2  col3
0    c   1.0   1.0
1    a   2.0   2.0
2    b   3.0   4.0
3    b   NaN   4.0
4    a   5.0   5.0
Align the differences on columns
>>> df.compare(df2)
  col1       col3
  self other self other
0    a     c  NaN   NaN
2  NaN   NaN  3.0   4.0
Assign result_names
>>> df.compare(df2, result_names=("left", "right"))
  col1       col3
  left right left right
0    a     c  NaN   NaN
2  NaN   NaN  3.0   4.0
Stack the differences on rows
>>> df.compare(df2, align_axis=0)
        col1  col3
0 self     a   NaN
  other    c   NaN
2 self   NaN   3.0
  other  NaN   4.0
Keep the equal values
>>> df.compare(df2, keep_equal=True)
  col1       col3
  self other self other
0    a     c  1.0   1.0
2    b     b  3.0   4.0
Keep all original rows and columns
>>> df.compare(df2, keep_shape=True)
  col1       col2       col3
  self other self other self other
0    a     c  NaN   NaN  NaN   NaN
1  NaN   NaN  NaN   NaN  NaN   NaN
2  NaN   NaN  NaN   NaN  3.0   4.0
3  NaN   NaN  NaN   NaN  NaN   NaN
4  NaN   NaN  NaN   NaN  NaN   NaN
Keep all original rows and columns and also all original values
>>> df.compare(df2, keep_shape=True, keep_equal=True)
  col1       col2       col3
  self other self other self other
0    a     c  1.0   1.0  1.0   1.0
1    a     a  2.0   2.0  2.0   2.0
2    b     b  3.0   3.0  3.0   4.0
3    b     b  NaN   NaN  4.0   4.0
4    a     a  5.0   5.0  5.0   5.0
                      
            
	
	
	 
	
		Vous êtes un professionnel et vous avez besoin d'une formation ?
		Sensibilisation àl'Intelligence Artificielle
		Voir le programme détaillé	
	
	
             
            
            
            
         
        
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :