Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « DataFrame »

Méthode pandas.DataFrame.dropna

Signature de la méthode dropna

def dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False) 

Description

dropna.__doc__

        Remove missing values.

        See the :ref:`User Guide <missing_data>` for more on which values are
        considered missing, and how to work with missing data.

        Parameters
        ----------
        axis : {0 or 'index', 1 or 'columns'}, default 0
            Determine if rows or columns which contain missing values are
            removed.

            * 0, or 'index' : Drop rows which contain missing values.
            * 1, or 'columns' : Drop columns which contain missing value.

            .. versionchanged:: 1.0.0

               Pass tuple or list to drop on multiple axes.
               Only a single axis is allowed.

        how : {'any', 'all'}, default 'any'
            Determine if row or column is removed from DataFrame, when we have
            at least one NA or all NA.

            * 'any' : If any NA values are present, drop that row or column.
            * 'all' : If all values are NA, drop that row or column.

        thresh : int, optional
            Require that many non-NA values.
        subset : array-like, optional
            Labels along other axis to consider, e.g. if you are dropping rows
            these would be a list of columns to include.
        inplace : bool, default False
            If True, do operation inplace and return None.

        Returns
        -------
        DataFrame or None
            DataFrame with NA entries dropped from it or None if ``inplace=True``.

        See Also
        --------
        DataFrame.isna: Indicate missing values.
        DataFrame.notna : Indicate existing (non-missing) values.
        DataFrame.fillna : Replace missing values.
        Series.dropna : Drop missing values.
        Index.dropna : Drop missing indices.

        Examples
        --------
        >>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
        ...                    "toy": [np.nan, 'Batmobile', 'Bullwhip'],
        ...                    "born": [pd.NaT, pd.Timestamp("1940-04-25"),
        ...                             pd.NaT]})
        >>> df
               name        toy       born
        0    Alfred        NaN        NaT
        1    Batman  Batmobile 1940-04-25
        2  Catwoman   Bullwhip        NaT

        Drop the rows where at least one element is missing.

        >>> df.dropna()
             name        toy       born
        1  Batman  Batmobile 1940-04-25

        Drop the columns where at least one element is missing.

        >>> df.dropna(axis='columns')
               name
        0    Alfred
        1    Batman
        2  Catwoman

        Drop the rows where all elements are missing.

        >>> df.dropna(how='all')
               name        toy       born
        0    Alfred        NaN        NaT
        1    Batman  Batmobile 1940-04-25
        2  Catwoman   Bullwhip        NaT

        Keep only the rows with at least 2 non-NA values.

        >>> df.dropna(thresh=2)
               name        toy       born
        1    Batman  Batmobile 1940-04-25
        2  Catwoman   Bullwhip        NaT

        Define in which columns to look for missing values.

        >>> df.dropna(subset=['name', 'toy'])
               name        toy       born
        1    Batman  Batmobile 1940-04-25
        2  Catwoman   Bullwhip        NaT

        Keep the DataFrame with valid entries in the same variable.

        >>> df.dropna(inplace=True)
        >>> df
             name        toy       born
        1  Batman  Batmobile 1940-04-25