Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Classe « DataFrame »

Méthode pandas.DataFrame.sort_values

Signature de la méthode sort_values

def sort_values(self, by: 'IndexLabel', *, axis: 'Axis' = 0, ascending: 'bool | list[bool] | tuple[bool, ...]' = True, inplace: 'bool' = False, kind: 'SortKind' = 'quicksort', na_position: 'str' = 'last', ignore_index: 'bool' = False, key: 'ValueKeyFunc | None' = None) -> 'DataFrame | None' 

Description

help(DataFrame.sort_values)

Sort by the values along either axis.

Parameters
----------
by : str or list of str
    Name or list of names to sort by.

    - if `axis` is 0 or `'index'` then `by` may contain index
      levels and/or column labels.
    - if `axis` is 1 or `'columns'` then `by` may contain column
      levels and/or index labels.
axis : "{0 or 'index', 1 or 'columns'}", default 0
     Axis to be sorted.
ascending : bool or list of bool, default True
     Sort ascending vs. descending. Specify list for multiple sort
     orders.  If this is a list of bools, must match the length of
     the by.
inplace : bool, default False
     If True, perform operation in-place.
kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, default 'quicksort'
     Choice of sorting algorithm. See also :func:`numpy.sort` for more
     information. `mergesort` and `stable` are the only stable algorithms. For
     DataFrames, this option is only applied when sorting on a single
     column or label.
na_position : {'first', 'last'}, default 'last'
     Puts NaNs at the beginning if `first`; `last` puts NaNs at the
     end.
ignore_index : bool, default False
     If True, the resulting axis will be labeled 0, 1, ..., n - 1.
key : callable, optional
    Apply the key function to the values
    before sorting. This is similar to the `key` argument in the
    builtin :meth:`sorted` function, with the notable difference that
    this `key` function should be *vectorized*. It should expect a
    ``Series`` and return a Series with the same shape as the input.
    It will be applied to each column in `by` independently.

Returns
-------
DataFrame or None
    DataFrame with sorted values or None if ``inplace=True``.

See Also
--------
DataFrame.sort_index : Sort a DataFrame by the index.
Series.sort_values : Similar method for a Series.

Examples
--------
>>> df = pd.DataFrame({
...     'col1': ['A', 'A', 'B', np.nan, 'D', 'C'],
...     'col2': [2, 1, 9, 8, 7, 4],
...     'col3': [0, 1, 9, 4, 2, 3],
...     'col4': ['a', 'B', 'c', 'D', 'e', 'F']
... })
>>> df
  col1  col2  col3 col4
0    A     2     0    a
1    A     1     1    B
2    B     9     9    c
3  NaN     8     4    D
4    D     7     2    e
5    C     4     3    F

Sort by col1

>>> df.sort_values(by=['col1'])
  col1  col2  col3 col4
0    A     2     0    a
1    A     1     1    B
2    B     9     9    c
5    C     4     3    F
4    D     7     2    e
3  NaN     8     4    D

Sort by multiple columns

>>> df.sort_values(by=['col1', 'col2'])
  col1  col2  col3 col4
1    A     1     1    B
0    A     2     0    a
2    B     9     9    c
5    C     4     3    F
4    D     7     2    e
3  NaN     8     4    D

Sort Descending

>>> df.sort_values(by='col1', ascending=False)
  col1  col2  col3 col4
4    D     7     2    e
5    C     4     3    F
2    B     9     9    c
0    A     2     0    a
1    A     1     1    B
3  NaN     8     4    D

Putting NAs first

>>> df.sort_values(by='col1', ascending=False, na_position='first')
  col1  col2  col3 col4
3  NaN     8     4    D
4    D     7     2    e
5    C     4     3    F
2    B     9     9    c
0    A     2     0    a
1    A     1     1    B

Sorting with a key function

>>> df.sort_values(by='col4', key=lambda col: col.str.lower())
   col1  col2  col3 col4
0    A     2     0    a
1    A     1     1    B
2    B     9     9    c
3  NaN     8     4    D
4    D     7     2    e
5    C     4     3    F

Natural sort with the key argument,
using the `natsort <https://github.com/SethMMorton/natsort>` package.

>>> df = pd.DataFrame({
...    "time": ['0hr', '128hr', '72hr', '48hr', '96hr'],
...    "value": [10, 20, 30, 40, 50]
... })
>>> df
    time  value
0    0hr     10
1  128hr     20
2   72hr     30
3   48hr     40
4   96hr     50
>>> from natsort import index_natsorted
>>> df.sort_values(
...     by="time",
...     key=lambda x: np.argsort(index_natsorted(df["time"]))
... )
    time  value
0    0hr     10
3   48hr     40
2   72hr     30
4   96hr     50
1  128hr     20


Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les fondamentaux
Voir le programme détaillé