Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « DataFrame »

Méthode pandas.DataFrame.explode

Signature de la méthode explode

def explode(self, column: 'Union[str, Tuple]', ignore_index: 'bool' = False) -> 'DataFrame' 

Description

explode.__doc__

        Transform each element of a list-like to a row, replicating index values.

        .. versionadded:: 0.25.0

        Parameters
        ----------
        column : str or tuple
            Column to explode.
        ignore_index : bool, default False
            If True, the resulting index will be labeled 0, 1, ..., n - 1.

            .. versionadded:: 1.1.0

        Returns
        -------
        DataFrame
            Exploded lists to rows of the subset columns;
            index will be duplicated for these rows.

        Raises
        ------
        ValueError :
            if columns of the frame are not unique.

        See Also
        --------
        DataFrame.unstack : Pivot a level of the (necessarily hierarchical)
            index labels.
        DataFrame.melt : Unpivot a DataFrame from wide format to long format.
        Series.explode : Explode a DataFrame from list-like columns to long format.

        Notes
        -----
        This routine will explode list-likes including lists, tuples, sets,
        Series, and np.ndarray. The result dtype of the subset rows will
        be object. Scalars will be returned unchanged, and empty list-likes will
        result in a np.nan for that row. In addition, the ordering of rows in the
        output will be non-deterministic when exploding sets.

        Examples
        --------
        >>> df = pd.DataFrame({'A': [[1, 2, 3], 'foo', [], [3, 4]], 'B': 1})
        >>> df
                   A  B
        0  [1, 2, 3]  1
        1        foo  1
        2         []  1
        3     [3, 4]  1

        >>> df.explode('A')
             A  B
        0    1  1
        0    2  1
        0    3  1
        1  foo  1
        2  NaN  1
        3    3  1
        3    4  1