Vous êtes un professionnel et vous avez besoin d'une formation ?
Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Classe « DataFrame »
Signature de la méthode sum
def sum(self, axis: 'Axis | None' = 0, skipna: 'bool' = True, numeric_only: 'bool' = False, min_count: 'int' = 0, **kwargs)
Description
help(DataFrame.sum)
Return the sum of the values over the requested axis.
This is equivalent to the method ``numpy.sum``.
Parameters
----------
axis : {index (0), columns (1)}
Axis for the function to be applied on.
For `Series` this parameter is unused and defaults to 0.
.. warning::
The behavior of DataFrame.sum with ``axis=None`` is deprecated,
in a future version this will reduce over both axes and return a scalar
To retain the old behavior, pass axis=0 (or do not pass axis).
.. versionadded:: 2.0.0
skipna : bool, default True
Exclude NA/null values when computing the result.
numeric_only : bool, default False
Include only float, int, boolean columns. Not implemented for Series.
min_count : int, default 0
The required number of valid values to perform the operation. If fewer than
``min_count`` non-NA values are present the result will be NA.
**kwargs
Additional keyword arguments to be passed to the function.
Returns
-------
Series or scalar
See Also
--------
Series.sum : Return the sum.
Series.min : Return the minimum.
Series.max : Return the maximum.
Series.idxmin : Return the index of the minimum.
Series.idxmax : Return the index of the maximum.
DataFrame.sum : Return the sum over the requested axis.
DataFrame.min : Return the minimum over the requested axis.
DataFrame.max : Return the maximum over the requested axis.
DataFrame.idxmin : Return the index of the minimum over the requested axis.
DataFrame.idxmax : Return the index of the maximum over the requested axis.
Examples
--------
>>> idx = pd.MultiIndex.from_arrays([
... ['warm', 'warm', 'cold', 'cold'],
... ['dog', 'falcon', 'fish', 'spider']],
... names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx)
>>> s
blooded animal
warm dog 4
falcon 2
cold fish 0
spider 8
Name: legs, dtype: int64
>>> s.sum()
14
By default, the sum of an empty or all-NA Series is ``0``.
>>> pd.Series([], dtype="float64").sum() # min_count=0 is the default
0.0
This can be controlled with the ``min_count`` parameter. For example, if
you'd like the sum of an empty series to be NaN, pass ``min_count=1``.
>>> pd.Series([], dtype="float64").sum(min_count=1)
nan
Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
empty series identically.
>>> pd.Series([np.nan]).sum()
0.0
>>> pd.Series([np.nan]).sum(min_count=1)
nan
Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :