Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Classe « DataFrame »

Méthode pandas.DataFrame.sum

Signature de la méthode sum

def sum(self, axis: 'Axis | None' = 0, skipna: 'bool' = True, numeric_only: 'bool' = False, min_count: 'int' = 0, **kwargs) 

Description

help(DataFrame.sum)

Return the sum of the values over the requested axis.

This is equivalent to the method ``numpy.sum``.

Parameters
----------
axis : {index (0), columns (1)}
    Axis for the function to be applied on.
    For `Series` this parameter is unused and defaults to 0.

    .. warning::

        The behavior of DataFrame.sum with ``axis=None`` is deprecated,
        in a future version this will reduce over both axes and return a scalar
        To retain the old behavior, pass axis=0 (or do not pass axis).

    .. versionadded:: 2.0.0

skipna : bool, default True
    Exclude NA/null values when computing the result.
numeric_only : bool, default False
    Include only float, int, boolean columns. Not implemented for Series.

min_count : int, default 0
    The required number of valid values to perform the operation. If fewer than
    ``min_count`` non-NA values are present the result will be NA.
**kwargs
    Additional keyword arguments to be passed to the function.

Returns
-------
Series or scalar

See Also
--------
Series.sum : Return the sum.
Series.min : Return the minimum.
Series.max : Return the maximum.
Series.idxmin : Return the index of the minimum.
Series.idxmax : Return the index of the maximum.
DataFrame.sum : Return the sum over the requested axis.
DataFrame.min : Return the minimum over the requested axis.
DataFrame.max : Return the maximum over the requested axis.
DataFrame.idxmin : Return the index of the minimum over the requested axis.
DataFrame.idxmax : Return the index of the maximum over the requested axis.

Examples
--------
>>> idx = pd.MultiIndex.from_arrays([
...     ['warm', 'warm', 'cold', 'cold'],
...     ['dog', 'falcon', 'fish', 'spider']],
...     names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx)
>>> s
blooded  animal
warm     dog       4
         falcon    2
cold     fish      0
         spider    8
Name: legs, dtype: int64

>>> s.sum()
14

By default, the sum of an empty or all-NA Series is ``0``.

>>> pd.Series([], dtype="float64").sum()  # min_count=0 is the default
0.0

This can be controlled with the ``min_count`` parameter. For example, if
you'd like the sum of an empty series to be NaN, pass ``min_count=1``.

>>> pd.Series([], dtype="float64").sum(min_count=1)
nan

Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
empty series identically.

>>> pd.Series([np.nan]).sum()
0.0

>>> pd.Series([np.nan]).sum(min_count=1)
nan


Vous êtes un professionnel et vous avez besoin d'une formation ? Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé