Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Classe « DataFrame »

Méthode pandas.DataFrame.to_xml

Signature de la méthode to_xml

def to_xml(self, path_or_buffer: 'FilePath | WriteBuffer[bytes] | WriteBuffer[str] | None' = None, *, index: 'bool' = True, root_name: 'str | None' = 'data', row_name: 'str | None' = 'row', na_rep: 'str | None' = None, attr_cols: 'list[str] | None' = None, elem_cols: 'list[str] | None' = None, namespaces: 'dict[str | None, str] | None' = None, prefix: 'str | None' = None, encoding: 'str' = 'utf-8', xml_declaration: 'bool | None' = True, pretty_print: 'bool | None' = True, parser: 'XMLParsers | None' = 'lxml', stylesheet: 'FilePath | ReadBuffer[str] | ReadBuffer[bytes] | None' = None, compression: 'CompressionOptions' = 'infer', storage_options: 'StorageOptions | None' = None) -> 'str | None' 

Description

help(DataFrame.to_xml)

Render a DataFrame to an XML document.

.. versionadded:: 1.3.0

Parameters
----------
path_or_buffer : str, path object, file-like object, or None, default None
    String, path object (implementing ``os.PathLike[str]``), or file-like
    object implementing a ``write()`` function. If None, the result is returned
    as a string.
index : bool, default True
    Whether to include index in XML document.
root_name : str, default 'data'
    The name of root element in XML document.
row_name : str, default 'row'
    The name of row element in XML document.
na_rep : str, optional
    Missing data representation.
attr_cols : list-like, optional
    List of columns to write as attributes in row element.
    Hierarchical columns will be flattened with underscore
    delimiting the different levels.
elem_cols : list-like, optional
    List of columns to write as children in row element. By default,
    all columns output as children of row element. Hierarchical
    columns will be flattened with underscore delimiting the
    different levels.
namespaces : dict, optional
    All namespaces to be defined in root element. Keys of dict
    should be prefix names and values of dict corresponding URIs.
    Default namespaces should be given empty string key. For
    example, ::

        namespaces = {"": "https://example.com"}

prefix : str, optional
    Namespace prefix to be used for every element and/or attribute
    in document. This should be one of the keys in ``namespaces``
    dict.
encoding : str, default 'utf-8'
    Encoding of the resulting document.
xml_declaration : bool, default True
    Whether to include the XML declaration at start of document.
pretty_print : bool, default True
    Whether output should be pretty printed with indentation and
    line breaks.
parser : {'lxml','etree'}, default 'lxml'
    Parser module to use for building of tree. Only 'lxml' and
    'etree' are supported. With 'lxml', the ability to use XSLT
    stylesheet is supported.
stylesheet : str, path object or file-like object, optional
    A URL, file-like object, or a raw string containing an XSLT
    script used to transform the raw XML output. Script should use
    layout of elements and attributes from original output. This
    argument requires ``lxml`` to be installed. Only XSLT 1.0
    scripts and not later versions is currently supported.
compression : str or dict, default 'infer'
    For on-the-fly compression of the output data. If 'infer' and 'path_or_buffer' is
    path-like, then detect compression from the following extensions: '.gz',
    '.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2'
    (otherwise no compression).
    Set to ``None`` for no compression.
    Can also be a dict with key ``'method'`` set
    to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'xz'``, ``'tar'``} and
    other key-value pairs are forwarded to
    ``zipfile.ZipFile``, ``gzip.GzipFile``,
    ``bz2.BZ2File``, ``zstandard.ZstdCompressor``, ``lzma.LZMAFile`` or
    ``tarfile.TarFile``, respectively.
    As an example, the following could be passed for faster compression and to create
    a reproducible gzip archive:
    ``compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}``.

    .. versionadded:: 1.5.0
        Added support for `.tar` files.

    .. versionchanged:: 1.4.0 Zstandard support.

storage_options : dict, optional
    Extra options that make sense for a particular storage connection, e.g.
    host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
    are forwarded to ``urllib.request.Request`` as header options. For other
    URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
    forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
    details, and for more examples on storage options refer `here
    <https://pandas.pydata.org/docs/user_guide/io.html?
    highlight=storage_options#reading-writing-remote-files>`_.

Returns
-------
None or str
    If ``io`` is None, returns the resulting XML format as a
    string. Otherwise returns None.

See Also
--------
to_json : Convert the pandas object to a JSON string.
to_html : Convert DataFrame to a html.

Examples
--------
>>> df = pd.DataFrame({'shape': ['square', 'circle', 'triangle'],
...                    'degrees': [360, 360, 180],
...                    'sides': [4, np.nan, 3]})

>>> df.to_xml()  # doctest: +SKIP
<?xml version='1.0' encoding='utf-8'?>
<data>
  <row>
    <index>0</index>
    <shape>square</shape>
    <degrees>360</degrees>
    <sides>4.0</sides>
  </row>
  <row>
    <index>1</index>
    <shape>circle</shape>
    <degrees>360</degrees>
    <sides/>
  </row>
  <row>
    <index>2</index>
    <shape>triangle</shape>
    <degrees>180</degrees>
    <sides>3.0</sides>
  </row>
</data>

>>> df.to_xml(attr_cols=[
...           'index', 'shape', 'degrees', 'sides'
...           ])  # doctest: +SKIP
<?xml version='1.0' encoding='utf-8'?>
<data>
  <row index="0" shape="square" degrees="360" sides="4.0"/>
  <row index="1" shape="circle" degrees="360"/>
  <row index="2" shape="triangle" degrees="180" sides="3.0"/>
</data>

>>> df.to_xml(namespaces={"doc": "https://example.com"},
...           prefix="doc")  # doctest: +SKIP
<?xml version='1.0' encoding='utf-8'?>
<doc:data xmlns:doc="https://example.com">
  <doc:row>
    <doc:index>0</doc:index>
    <doc:shape>square</doc:shape>
    <doc:degrees>360</doc:degrees>
    <doc:sides>4.0</doc:sides>
  </doc:row>
  <doc:row>
    <doc:index>1</doc:index>
    <doc:shape>circle</doc:shape>
    <doc:degrees>360</doc:degrees>
    <doc:sides/>
  </doc:row>
  <doc:row>
    <doc:index>2</doc:index>
    <doc:shape>triangle</doc:shape>
    <doc:degrees>180</doc:degrees>
    <doc:sides>3.0</doc:sides>
  </doc:row>
</doc:data>


Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé