Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Classe « DataFrame »
Signature de la méthode all
def all(self, axis: 'Axis | None' = 0, bool_only: 'bool' = False, skipna: 'bool' = True, **kwargs) -> 'Series | bool'
Description
help(DataFrame.all)
Return whether all elements are True, potentially over an axis.
Returns True unless there at least one element within a series or
along a Dataframe axis that is False or equivalent (e.g. zero or
empty).
Parameters
----------
axis : {0 or 'index', 1 or 'columns', None}, default 0
Indicate which axis or axes should be reduced. For `Series` this parameter
is unused and defaults to 0.
* 0 / 'index' : reduce the index, return a Series whose index is the
original column labels.
* 1 / 'columns' : reduce the columns, return a Series whose index is the
original index.
* None : reduce all axes, return a scalar.
bool_only : bool, default False
Include only boolean columns. Not implemented for Series.
skipna : bool, default True
Exclude NA/null values. If the entire row/column is NA and skipna is
True, then the result will be True, as for an empty row/column.
If skipna is False, then NA are treated as True, because these are not
equal to zero.
**kwargs : any, default None
Additional keywords have no effect but might be accepted for
compatibility with NumPy.
Returns
-------
Series or DataFrame
If level is specified, then, DataFrame is returned; otherwise, Series
is returned.
See Also
--------
Series.all : Return True if all elements are True.
DataFrame.any : Return True if one (or more) elements are True.
Examples
--------
**Series**
>>> pd.Series([True, True]).all()
True
>>> pd.Series([True, False]).all()
False
>>> pd.Series([], dtype="float64").all()
True
>>> pd.Series([np.nan]).all()
True
>>> pd.Series([np.nan]).all(skipna=False)
True
**DataFrames**
Create a dataframe from a dictionary.
>>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]})
>>> df
col1 col2
0 True True
1 True False
Default behaviour checks if values in each column all return True.
>>> df.all()
col1 True
col2 False
dtype: bool
Specify ``axis='columns'`` to check if values in each row all return True.
>>> df.all(axis='columns')
0 True
1 False
dtype: bool
Or ``axis=None`` for whether every value is True.
>>> df.all(axis=None)
False
Vous êtes un professionnel et vous avez besoin d'une formation ?
Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :