Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « DataFrame »

Méthode pandas.DataFrame.idxmin

Signature de la méthode idxmin

def idxmin(self, axis=0, skipna=True) -> 'Series' 

Description

idxmin.__doc__

        Return index of first occurrence of minimum over requested axis.

        NA/null values are excluded.

        Parameters
        ----------
        axis : {0 or 'index', 1 or 'columns'}, default 0
            The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
        skipna : bool, default True
            Exclude NA/null values. If an entire row/column is NA, the result
            will be NA.

        Returns
        -------
        Series
            Indexes of minima along the specified axis.

        Raises
        ------
        ValueError
            * If the row/column is empty

        See Also
        --------
        Series.idxmin : Return index of the minimum element.

        Notes
        -----
        This method is the DataFrame version of ``ndarray.argmin``.

        Examples
        --------
        Consider a dataset containing food consumption in Argentina.

        >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48],
        ...                    'co2_emissions': [37.2, 19.66, 1712]},
        ...                    index=['Pork', 'Wheat Products', 'Beef'])

        >>> df
                        consumption  co2_emissions
        Pork                  10.51         37.20
        Wheat Products       103.11         19.66
        Beef                  55.48       1712.00

        By default, it returns the index for the minimum value in each column.

        >>> df.idxmin()
        consumption                Pork
        co2_emissions    Wheat Products
        dtype: object

        To return the index for the minimum value in each row, use ``axis="columns"``.

        >>> df.idxmin(axis="columns")
        Pork                consumption
        Wheat Products    co2_emissions
        Beef                consumption
        dtype: object