Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Classe « DataFrame »
Signature de la méthode cumsum
def cumsum(self, axis: 'Axis | None' = None, skipna: 'bool' = True, *args, **kwargs)
Description
help(DataFrame.cumsum)
Return cumulative sum over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative
sum.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
The index or the name of the axis. 0 is equivalent to None or 'index'.
For `Series` this parameter is unused and defaults to 0.
skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.
*args, **kwargs
Additional keywords have no effect but might be accepted for
compatibility with NumPy.
Returns
-------
Series or DataFrame
Return cumulative sum of Series or DataFrame.
See Also
--------
core.window.expanding.Expanding.sum : Similar functionality
but ignores ``NaN`` values.
DataFrame.sum : Return the sum over
DataFrame axis.
DataFrame.cummax : Return cumulative maximum over DataFrame axis.
DataFrame.cummin : Return cumulative minimum over DataFrame axis.
DataFrame.cumsum : Return cumulative sum over DataFrame axis.
DataFrame.cumprod : Return cumulative product over DataFrame axis.
Examples
--------
**Series**
>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64
By default, NA values are ignored.
>>> s.cumsum()
0 2.0
1 NaN
2 7.0
3 6.0
4 6.0
dtype: float64
To include NA values in the operation, use ``skipna=False``
>>> s.cumsum(skipna=False)
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64
**DataFrame**
>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df
A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0
By default, iterates over rows and finds the sum
in each column. This is equivalent to ``axis=None`` or ``axis='index'``.
>>> df.cumsum()
A B
0 2.0 1.0
1 5.0 NaN
2 6.0 1.0
To iterate over columns and find the sum in each row,
use ``axis=1``
>>> df.cumsum(axis=1)
A B
0 2.0 3.0
1 3.0 NaN
2 1.0 1.0
Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les compléments
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :