 
	
		Vous êtes un professionnel et vous avez besoin d'une formation ?
		Coder avec une
Intelligence Artificielle
		Voir le programme détaillé	
	
	
    
            Classe « DataFrame »
            
            
Signature de la méthode  corr 
def corr(self, method: 'CorrelationMethod' = 'pearson', min_periods: 'int' = 1, numeric_only: 'bool' = False) -> 'DataFrame' 
Description
help(DataFrame.corr)
Compute pairwise correlation of columns, excluding NA/null values.
Parameters
----------
method : {'pearson', 'kendall', 'spearman'} or callable
    Method of correlation:
    * pearson : standard correlation coefficient
    * kendall : Kendall Tau correlation coefficient
    * spearman : Spearman rank correlation
    * callable: callable with input two 1d ndarrays
        and returning a float. Note that the returned matrix from corr
        will have 1 along the diagonals and will be symmetric
        regardless of the callable's behavior.
min_periods : int, optional
    Minimum number of observations required per pair of columns
    to have a valid result. Currently only available for Pearson
    and Spearman correlation.
numeric_only : bool, default False
    Include only `float`, `int` or `boolean` data.
    .. versionadded:: 1.5.0
    .. versionchanged:: 2.0.0
        The default value of ``numeric_only`` is now ``False``.
Returns
-------
DataFrame
    Correlation matrix.
See Also
--------
DataFrame.corrwith : Compute pairwise correlation with another
    DataFrame or Series.
Series.corr : Compute the correlation between two Series.
Notes
-----
Pearson, Kendall and Spearman correlation are currently computed using pairwise complete observations.
* `Pearson correlation coefficient <https://en.wikipedia.org/wiki/Pearson_correlation_coefficient>`_
* `Kendall rank correlation coefficient <https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient>`_
* `Spearman's rank correlation coefficient <https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient>`_
Examples
--------
>>> def histogram_intersection(a, b):
...     v = np.minimum(a, b).sum().round(decimals=1)
...     return v
>>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)],
...                   columns=['dogs', 'cats'])
>>> df.corr(method=histogram_intersection)
      dogs  cats
dogs   1.0   0.3
cats   0.3   1.0
>>> df = pd.DataFrame([(1, 1), (2, np.nan), (np.nan, 3), (4, 4)],
...                   columns=['dogs', 'cats'])
>>> df.corr(min_periods=3)
      dogs  cats
dogs   1.0   NaN
cats   NaN   1.0
                      
            
	
	
	 
	
		Vous êtes un professionnel et vous avez besoin d'une formation ?
		Programmation Python
Les compléments
		Voir le programme détaillé	
	
	
             
            
            
            
         
        
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :