Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Classe « DataFrame »

Méthode pandas.DataFrame.mean

Signature de la méthode mean

def mean(self, axis: 'Axis | None' = 0, skipna: 'bool' = True, numeric_only: 'bool' = False, **kwargs) 

Description

help(DataFrame.mean)

Return the mean of the values over the requested axis.

Parameters
----------
axis : {index (0), columns (1)}
    Axis for the function to be applied on.
    For `Series` this parameter is unused and defaults to 0.

    For DataFrames, specifying ``axis=None`` will apply the aggregation
    across both axes.

    .. versionadded:: 2.0.0

skipna : bool, default True
    Exclude NA/null values when computing the result.
numeric_only : bool, default False
    Include only float, int, boolean columns. Not implemented for Series.

**kwargs
    Additional keyword arguments to be passed to the function.

Returns
-------
Series or scalar

            Examples
            --------
            >>> s = pd.Series([1, 2, 3])
            >>> s.mean()
            2.0

            With a DataFrame

            >>> df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra'])
            >>> df
                   a   b
            tiger  1   2
            zebra  2   3
            >>> df.mean()
            a   1.5
            b   2.5
            dtype: float64

            Using axis=1

            >>> df.mean(axis=1)
            tiger   1.5
            zebra   2.5
            dtype: float64

            In this case, `numeric_only` should be set to `True` to avoid
            getting an error.

            >>> df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']},
            ...                   index=['tiger', 'zebra'])
            >>> df.mean(numeric_only=True)
            a   1.5
            dtype: float64


Vous êtes un professionnel et vous avez besoin d'une formation ? Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé