Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « DataFrame »

Méthode pandas.DataFrame.update

Signature de la méthode update

def update(self, other, join='left', overwrite=True, filter_func=None, errors='ignore') -> 'None' 

Description

update.__doc__

        Modify in place using non-NA values from another DataFrame.

        Aligns on indices. There is no return value.

        Parameters
        ----------
        other : DataFrame, or object coercible into a DataFrame
            Should have at least one matching index/column label
            with the original DataFrame. If a Series is passed,
            its name attribute must be set, and that will be
            used as the column name to align with the original DataFrame.
        join : {'left'}, default 'left'
            Only left join is implemented, keeping the index and columns of the
            original object.
        overwrite : bool, default True
            How to handle non-NA values for overlapping keys:

            * True: overwrite original DataFrame's values
              with values from `other`.
            * False: only update values that are NA in
              the original DataFrame.

        filter_func : callable(1d-array) -> bool 1d-array, optional
            Can choose to replace values other than NA. Return True for values
            that should be updated.
        errors : {'raise', 'ignore'}, default 'ignore'
            If 'raise', will raise a ValueError if the DataFrame and `other`
            both contain non-NA data in the same place.

            .. versionchanged:: 0.24.0
               Changed from `raise_conflict=False|True`
               to `errors='ignore'|'raise'`.

        Returns
        -------
        None : method directly changes calling object

        Raises
        ------
        ValueError
            * When `errors='raise'` and there's overlapping non-NA data.
            * When `errors` is not either `'ignore'` or `'raise'`
        NotImplementedError
            * If `join != 'left'`

        See Also
        --------
        dict.update : Similar method for dictionaries.
        DataFrame.merge : For column(s)-on-column(s) operations.

        Examples
        --------
        >>> df = pd.DataFrame({'A': [1, 2, 3],
        ...                    'B': [400, 500, 600]})
        >>> new_df = pd.DataFrame({'B': [4, 5, 6],
        ...                        'C': [7, 8, 9]})
        >>> df.update(new_df)
        >>> df
           A  B
        0  1  4
        1  2  5
        2  3  6

        The DataFrame's length does not increase as a result of the update,
        only values at matching index/column labels are updated.

        >>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
        ...                    'B': ['x', 'y', 'z']})
        >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']})
        >>> df.update(new_df)
        >>> df
           A  B
        0  a  d
        1  b  e
        2  c  f

        For Series, its name attribute must be set.

        >>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
        ...                    'B': ['x', 'y', 'z']})
        >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2])
        >>> df.update(new_column)
        >>> df
           A  B
        0  a  d
        1  b  y
        2  c  e
        >>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
        ...                    'B': ['x', 'y', 'z']})
        >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2])
        >>> df.update(new_df)
        >>> df
           A  B
        0  a  x
        1  b  d
        2  c  e

        If `other` contains NaNs the corresponding values are not updated
        in the original dataframe.

        >>> df = pd.DataFrame({'A': [1, 2, 3],
        ...                    'B': [400, 500, 600]})
        >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]})
        >>> df.update(new_df)
        >>> df
           A      B
        0  1    4.0
        1  2  500.0
        2  3    6.0