Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Classe « DataFrame »

Méthode pandas.DataFrame.groupby

Signature de la méthode groupby

def groupby(self, by=None, axis: 'Axis | lib.NoDefault' = <no_default>, level: 'IndexLabel | None' = None, as_index: 'bool' = True, sort: 'bool' = True, group_keys: 'bool' = True, observed: 'bool | lib.NoDefault' = <no_default>, dropna: 'bool' = True) -> 'DataFrameGroupBy' 

Description

help(DataFrame.groupby)

Group DataFrame using a mapper or by a Series of columns.

A groupby operation involves some combination of splitting the
object, applying a function, and combining the results. This can be
used to group large amounts of data and compute operations on these
groups.

Parameters
----------
by : mapping, function, label, pd.Grouper or list of such
    Used to determine the groups for the groupby.
    If ``by`` is a function, it's called on each value of the object's
    index. If a dict or Series is passed, the Series or dict VALUES
    will be used to determine the groups (the Series' values are first
    aligned; see ``.align()`` method). If a list or ndarray of length
    equal to the selected axis is passed (see the `groupby user guide
    <https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#splitting-an-object-into-groups>`_),
    the values are used as-is to determine the groups. A label or list
    of labels may be passed to group by the columns in ``self``.
    Notice that a tuple is interpreted as a (single) key.
axis : {0 or 'index', 1 or 'columns'}, default 0
    Split along rows (0) or columns (1). For `Series` this parameter
    is unused and defaults to 0.

    .. deprecated:: 2.1.0

        Will be removed and behave like axis=0 in a future version.
        For ``axis=1``, do ``frame.T.groupby(...)`` instead.

level : int, level name, or sequence of such, default None
    If the axis is a MultiIndex (hierarchical), group by a particular
    level or levels. Do not specify both ``by`` and ``level``.
as_index : bool, default True
    Return object with group labels as the
    index. Only relevant for DataFrame input. as_index=False is
    effectively "SQL-style" grouped output. This argument has no effect
    on filtrations (see the `filtrations in the user guide
    <https://pandas.pydata.org/docs/dev/user_guide/groupby.html#filtration>`_),
    such as ``head()``, ``tail()``, ``nth()`` and in transformations
    (see the `transformations in the user guide
    <https://pandas.pydata.org/docs/dev/user_guide/groupby.html#transformation>`_).
sort : bool, default True
    Sort group keys. Get better performance by turning this off.
    Note this does not influence the order of observations within each
    group. Groupby preserves the order of rows within each group. If False,
    the groups will appear in the same order as they did in the original DataFrame.
    This argument has no effect on filtrations (see the `filtrations in the user guide
    <https://pandas.pydata.org/docs/dev/user_guide/groupby.html#filtration>`_),
    such as ``head()``, ``tail()``, ``nth()`` and in transformations
    (see the `transformations in the user guide
    <https://pandas.pydata.org/docs/dev/user_guide/groupby.html#transformation>`_).

    .. versionchanged:: 2.0.0

        Specifying ``sort=False`` with an ordered categorical grouper will no
        longer sort the values.

group_keys : bool, default True
    When calling apply and the ``by`` argument produces a like-indexed
    (i.e. :ref:`a transform <groupby.transform>`) result, add group keys to
    index to identify pieces. By default group keys are not included
    when the result's index (and column) labels match the inputs, and
    are included otherwise.

    .. versionchanged:: 1.5.0

       Warns that ``group_keys`` will no longer be ignored when the
       result from ``apply`` is a like-indexed Series or DataFrame.
       Specify ``group_keys`` explicitly to include the group keys or
       not.

    .. versionchanged:: 2.0.0

       ``group_keys`` now defaults to ``True``.

observed : bool, default False
    This only applies if any of the groupers are Categoricals.
    If True: only show observed values for categorical groupers.
    If False: show all values for categorical groupers.

    .. deprecated:: 2.1.0

        The default value will change to True in a future version of pandas.

dropna : bool, default True
    If True, and if group keys contain NA values, NA values together
    with row/column will be dropped.
    If False, NA values will also be treated as the key in groups.

Returns
-------
pandas.api.typing.DataFrameGroupBy
    Returns a groupby object that contains information about the groups.

See Also
--------
resample : Convenience method for frequency conversion and resampling
    of time series.

Notes
-----
See the `user guide
<https://pandas.pydata.org/pandas-docs/stable/groupby.html>`__ for more
detailed usage and examples, including splitting an object into groups,
iterating through groups, selecting a group, aggregation, and more.

Examples
--------
>>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon',
...                               'Parrot', 'Parrot'],
...                    'Max Speed': [380., 370., 24., 26.]})
>>> df
   Animal  Max Speed
0  Falcon      380.0
1  Falcon      370.0
2  Parrot       24.0
3  Parrot       26.0
>>> df.groupby(['Animal']).mean()
        Max Speed
Animal
Falcon      375.0
Parrot       25.0

**Hierarchical Indexes**

We can groupby different levels of a hierarchical index
using the `level` parameter:

>>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'],
...           ['Captive', 'Wild', 'Captive', 'Wild']]
>>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type'))
>>> df = pd.DataFrame({'Max Speed': [390., 350., 30., 20.]},
...                   index=index)
>>> df
                Max Speed
Animal Type
Falcon Captive      390.0
       Wild         350.0
Parrot Captive       30.0
       Wild          20.0
>>> df.groupby(level=0).mean()
        Max Speed
Animal
Falcon      370.0
Parrot       25.0
>>> df.groupby(level="Type").mean()
         Max Speed
Type
Captive      210.0
Wild         185.0

We can also choose to include NA in group keys or not by setting
`dropna` parameter, the default setting is `True`.

>>> l = [[1, 2, 3], [1, None, 4], [2, 1, 3], [1, 2, 2]]
>>> df = pd.DataFrame(l, columns=["a", "b", "c"])

>>> df.groupby(by=["b"]).sum()
    a   c
b
1.0 2   3
2.0 2   5

>>> df.groupby(by=["b"], dropna=False).sum()
    a   c
b
1.0 2   3
2.0 2   5
NaN 1   4

>>> l = [["a", 12, 12], [None, 12.3, 33.], ["b", 12.3, 123], ["a", 1, 1]]
>>> df = pd.DataFrame(l, columns=["a", "b", "c"])

>>> df.groupby(by="a").sum()
    b     c
a
a   13.0   13.0
b   12.3  123.0

>>> df.groupby(by="a", dropna=False).sum()
    b     c
a
a   13.0   13.0
b   12.3  123.0
NaN 12.3   33.0

When using ``.apply()``, use ``group_keys`` to include or exclude the
group keys. The ``group_keys`` argument defaults to ``True`` (include).

>>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon',
...                               'Parrot', 'Parrot'],
...                    'Max Speed': [380., 370., 24., 26.]})
>>> df.groupby("Animal", group_keys=True)[['Max Speed']].apply(lambda x: x)
          Max Speed
Animal
Falcon 0      380.0
       1      370.0
Parrot 2       24.0
       3       26.0

>>> df.groupby("Animal", group_keys=False)[['Max Speed']].apply(lambda x: x)
   Max Speed
0      380.0
1      370.0
2       24.0
3       26.0


Vous êtes un professionnel et vous avez besoin d'une formation ? Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé