Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les fondamentaux
Voir le programme détaillé
Classe « DataFrame »

Méthode pandas.DataFrame.le

Signature de la méthode le

def le(self, other, axis: 'Axis' = 'columns', level=None) -> 'DataFrame' 

Description

help(DataFrame.le)

Get Less than or equal to of dataframe and other, element-wise (binary operator `le`).

Among flexible wrappers (`eq`, `ne`, `le`, `lt`, `ge`, `gt`) to comparison
operators.

Equivalent to `==`, `!=`, `<=`, `<`, `>=`, `>` with support to choose axis
(rows or columns) and level for comparison.

Parameters
----------
other : scalar, sequence, Series, or DataFrame
    Any single or multiple element data structure, or list-like object.
axis : {0 or 'index', 1 or 'columns'}, default 'columns'
    Whether to compare by the index (0 or 'index') or columns
    (1 or 'columns').
level : int or label
    Broadcast across a level, matching Index values on the passed
    MultiIndex level.

Returns
-------
DataFrame of bool
    Result of the comparison.

See Also
--------
DataFrame.eq : Compare DataFrames for equality elementwise.
DataFrame.ne : Compare DataFrames for inequality elementwise.
DataFrame.le : Compare DataFrames for less than inequality
    or equality elementwise.
DataFrame.lt : Compare DataFrames for strictly less than
    inequality elementwise.
DataFrame.ge : Compare DataFrames for greater than inequality
    or equality elementwise.
DataFrame.gt : Compare DataFrames for strictly greater than
    inequality elementwise.

Notes
-----
Mismatched indices will be unioned together.
`NaN` values are considered different (i.e. `NaN` != `NaN`).

Examples
--------
>>> df = pd.DataFrame({'cost': [250, 150, 100],
...                    'revenue': [100, 250, 300]},
...                   index=['A', 'B', 'C'])
>>> df
   cost  revenue
A   250      100
B   150      250
C   100      300

Comparison with a scalar, using either the operator or method:

>>> df == 100
    cost  revenue
A  False     True
B  False    False
C   True    False

>>> df.eq(100)
    cost  revenue
A  False     True
B  False    False
C   True    False

When `other` is a :class:`Series`, the columns of a DataFrame are aligned
with the index of `other` and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"])
    cost  revenue
A   True     True
B   True    False
C  False     True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index')
   cost  revenue
A  True    False
B  True     True
C  True     True
D  True     True

When comparing to an arbitrary sequence, the number of columns must
match the number elements in `other`:

>>> df == [250, 100]
    cost  revenue
A   True     True
B  False    False
C  False    False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index')
    cost  revenue
A   True    False
B  False     True
C   True    False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]},
...                      index=['A', 'B', 'C', 'D'])
>>> other
   revenue
A      300
B      250
C      100
D      150

>>> df.gt(other)
    cost  revenue
A  False    False
B  False    False
C  False     True
D  False    False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220],
...                              'revenue': [100, 250, 300, 200, 175, 225]},
...                             index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
...                                    ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex
      cost  revenue
Q1 A   250      100
   B   150      250
   C   100      300
Q2 A   150      200
   B   300      175
   C   220      225

>>> df.le(df_multindex, level=1)
       cost  revenue
Q1 A   True     True
   B   True     True
   C   True     True
Q2 A  False     True
   B   True    False
   C   True    False


Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les fondamentaux
Voir le programme détaillé