Vous êtes un professionnel et vous avez besoin d'une formation ?
		Calcul scientifique
avec Python
		Voir le programme détaillé	
	
	
    
            Classe « DataFrame »
            
            
Signature de la méthode  agg 
def agg(self, func=None, axis: 'Axis' = 0, *args, **kwargs) 
Description
help(DataFrame.agg)
Aggregate using one or more operations over the specified axis.
Parameters
----------
func : function, str, list or dict
    Function to use for aggregating the data. If a function, must either
    work when passed a DataFrame or when passed to DataFrame.apply.
    Accepted combinations are:
    - function
    - string function name
    - list of functions and/or function names, e.g. ``[np.sum, 'mean']``
    - dict of axis labels -> functions, function names or list of such.
axis : {0 or 'index', 1 or 'columns'}, default 0
        If 0 or 'index': apply function to each column.
        If 1 or 'columns': apply function to each row.
*args
    Positional arguments to pass to `func`.
**kwargs
    Keyword arguments to pass to `func`.
Returns
-------
scalar, Series or DataFrame
    The return can be:
    * scalar : when Series.agg is called with single function
    * Series : when DataFrame.agg is called with a single function
    * DataFrame : when DataFrame.agg is called with several functions
See Also
--------
DataFrame.apply : Perform any type of operations.
DataFrame.transform : Perform transformation type operations.
pandas.DataFrame.groupby : Perform operations over groups.
pandas.DataFrame.resample : Perform operations over resampled bins.
pandas.DataFrame.rolling : Perform operations over rolling window.
pandas.DataFrame.expanding : Perform operations over expanding window.
pandas.core.window.ewm.ExponentialMovingWindow : Perform operation over exponential
    weighted window.
Notes
-----
The aggregation operations are always performed over an axis, either the
index (default) or the column axis. This behavior is different from
`numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`,
`var`), where the default is to compute the aggregation of the flattened
array, e.g., ``numpy.mean(arr_2d)`` as opposed to
``numpy.mean(arr_2d, axis=0)``.
`agg` is an alias for `aggregate`. Use the alias.
Functions that mutate the passed object can produce unexpected
behavior or errors and are not supported. See :ref:`gotchas.udf-mutation`
for more details.
A passed user-defined-function will be passed a Series for evaluation.
Examples
--------
>>> df = pd.DataFrame([[1, 2, 3],
...                    [4, 5, 6],
...                    [7, 8, 9],
...                    [np.nan, np.nan, np.nan]],
...                   columns=['A', 'B', 'C'])
Aggregate these functions over the rows.
>>> df.agg(['sum', 'min'])
        A     B     C
sum  12.0  15.0  18.0
min   1.0   2.0   3.0
Different aggregations per column.
>>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
        A    B
sum  12.0  NaN
min   1.0  2.0
max   NaN  8.0
Aggregate different functions over the columns and rename the index of the resulting
DataFrame.
>>> df.agg(x=('A', 'max'), y=('B', 'min'), z=('C', 'mean'))
     A    B    C
x  7.0  NaN  NaN
y  NaN  2.0  NaN
z  NaN  NaN  6.0
Aggregate over the columns.
>>> df.agg("mean", axis="columns")
0    2.0
1    5.0
2    8.0
3    NaN
dtype: float64
                      
            
	
	
	
	
		Vous êtes un professionnel et vous avez besoin d'une formation ?
		Calcul scientifique
avec Python
		Voir le programme détaillé	
	
	
             
            
            
            
         
        
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :