Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Module « scipy.linalg »
Signature de la fonction solve
def solve(a, b, lower=False, overwrite_a=False, overwrite_b=False, check_finite=True, assume_a=None, transposed=False)
Description
help(scipy.linalg.solve)
Solves the linear equation set ``a @ x == b`` for the unknown ``x``
for square `a` matrix.
If the data matrix is known to be a particular type then supplying the
corresponding string to ``assume_a`` key chooses the dedicated solver.
The available options are
=================== ================================
diagonal 'diagonal'
tridiagonal 'tridiagonal'
banded 'banded'
upper triangular 'upper triangular'
lower triangular 'lower triangular'
symmetric 'symmetric' (or 'sym')
hermitian 'hermitian' (or 'her')
positive definite 'positive definite' (or 'pos')
general 'general' (or 'gen')
=================== ================================
Parameters
----------
a : (N, N) array_like
Square input data
b : (N, NRHS) array_like
Input data for the right hand side.
lower : bool, default: False
Ignored unless ``assume_a`` is one of ``'sym'``, ``'her'``, or ``'pos'``.
If True, the calculation uses only the data in the lower triangle of `a`;
entries above the diagonal are ignored. If False (default), the
calculation uses only the data in the upper triangle of `a`; entries
below the diagonal are ignored.
overwrite_a : bool, default: False
Allow overwriting data in `a` (may enhance performance).
overwrite_b : bool, default: False
Allow overwriting data in `b` (may enhance performance).
check_finite : bool, default: True
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
assume_a : str, optional
Valid entries are described above.
If omitted or ``None``, checks are performed to identify structure so the
appropriate solver can be called.
transposed : bool, default: False
If True, solve ``a.T @ x == b``. Raises `NotImplementedError`
for complex `a`.
Returns
-------
x : (N, NRHS) ndarray
The solution array.
Raises
------
ValueError
If size mismatches detected or input a is not square.
LinAlgError
If the matrix is singular.
LinAlgWarning
If an ill-conditioned input a is detected.
NotImplementedError
If transposed is True and input a is a complex matrix.
Notes
-----
If the input b matrix is a 1-D array with N elements, when supplied
together with an NxN input a, it is assumed as a valid column vector
despite the apparent size mismatch. This is compatible with the
numpy.dot() behavior and the returned result is still 1-D array.
The general, symmetric, Hermitian and positive definite solutions are
obtained via calling ?GESV, ?SYSV, ?HESV, and ?POSV routines of
LAPACK respectively.
The datatype of the arrays define which solver is called regardless
of the values. In other words, even when the complex array entries have
precisely zero imaginary parts, the complex solver will be called based
on the data type of the array.
Examples
--------
Given `a` and `b`, solve for `x`:
>>> import numpy as np
>>> a = np.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]])
>>> b = np.array([2, 4, -1])
>>> from scipy import linalg
>>> x = linalg.solve(a, b)
>>> x
array([ 2., -2., 9.])
>>> np.dot(a, x) == b
array([ True, True, True], dtype=bool)
Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :