Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Module « scipy.linalg »
Signature de la fonction orthogonal_procrustes
def orthogonal_procrustes(A, B, check_finite=True)
Description
help(scipy.linalg.orthogonal_procrustes)
Compute the matrix solution of the orthogonal (or unitary) Procrustes problem.
Given matrices `A` and `B` of the same shape, find an orthogonal (or unitary in
the case of complex input) matrix `R` that most closely maps `A` to `B` using the
algorithm given in [1]_.
Parameters
----------
A : (M, N) array_like
Matrix to be mapped.
B : (M, N) array_like
Target matrix.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
R : (N, N) ndarray
The matrix solution of the orthogonal Procrustes problem.
Minimizes the Frobenius norm of ``(A @ R) - B``, subject to
``R.conj().T @ R = I``.
scale : float
Sum of the singular values of ``A.conj().T @ B``.
Raises
------
ValueError
If the input array shapes don't match or if check_finite is True and
the arrays contain Inf or NaN.
Notes
-----
Note that unlike higher level Procrustes analyses of spatial data, this
function only uses orthogonal transformations like rotations and
reflections, and it does not use scaling or translation.
.. versionadded:: 0.15.0
References
----------
.. [1] Peter H. Schonemann, "A generalized solution of the orthogonal
Procrustes problem", Psychometrica -- Vol. 31, No. 1, March, 1966.
:doi:`10.1007/BF02289451`
Examples
--------
>>> import numpy as np
>>> from scipy.linalg import orthogonal_procrustes
>>> A = np.array([[ 2, 0, 1], [-2, 0, 0]])
Flip the order of columns and check for the anti-diagonal mapping
>>> R, sca = orthogonal_procrustes(A, np.fliplr(A))
>>> R
array([[-5.34384992e-17, 0.00000000e+00, 1.00000000e+00],
[ 0.00000000e+00, 1.00000000e+00, 0.00000000e+00],
[ 1.00000000e+00, 0.00000000e+00, -7.85941422e-17]])
>>> sca
9.0
As an example of the unitary Procrustes problem, generate a
random complex matrix ``A``, a random unitary matrix ``Q``,
and their product ``B``.
>>> shape = (4, 4)
>>> rng = np.random.default_rng(589234981235)
>>> A = rng.random(shape) + rng.random(shape)*1j
>>> Q = rng.random(shape) + rng.random(shape)*1j
>>> Q, _ = np.linalg.qr(Q)
>>> B = A @ Q
`orthogonal_procrustes` recovers the unitary matrix ``Q``
from ``A`` and ``B``.
>>> R, _ = orthogonal_procrustes(A, B)
>>> np.allclose(R, Q)
True
Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :