Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les fondamentaux
Voir le programme détaillé
Module « scipy.linalg »

Fonction orthogonal_procrustes - module scipy.linalg

Signature de la fonction orthogonal_procrustes

def orthogonal_procrustes(A, B, check_finite=True) 

Description

help(scipy.linalg.orthogonal_procrustes)

Compute the matrix solution of the orthogonal (or unitary) Procrustes problem.

Given matrices `A` and `B` of the same shape, find an orthogonal (or unitary in
the case of complex input) matrix `R` that most closely maps `A` to `B` using the
algorithm given in [1]_.

Parameters
----------
A : (M, N) array_like
    Matrix to be mapped.
B : (M, N) array_like
    Target matrix.
check_finite : bool, optional
    Whether to check that the input matrices contain only finite numbers.
    Disabling may give a performance gain, but may result in problems
    (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns
-------
R : (N, N) ndarray
    The matrix solution of the orthogonal Procrustes problem.
    Minimizes the Frobenius norm of ``(A @ R) - B``, subject to
    ``R.conj().T @ R = I``.
scale : float
    Sum of the singular values of ``A.conj().T @ B``.

Raises
------
ValueError
    If the input array shapes don't match or if check_finite is True and
    the arrays contain Inf or NaN.

Notes
-----
Note that unlike higher level Procrustes analyses of spatial data, this
function only uses orthogonal transformations like rotations and
reflections, and it does not use scaling or translation.

.. versionadded:: 0.15.0

References
----------
.. [1] Peter H. Schonemann, "A generalized solution of the orthogonal
       Procrustes problem", Psychometrica -- Vol. 31, No. 1, March, 1966.
       :doi:`10.1007/BF02289451`

Examples
--------
>>> import numpy as np
>>> from scipy.linalg import orthogonal_procrustes
>>> A = np.array([[ 2,  0,  1], [-2,  0,  0]])

Flip the order of columns and check for the anti-diagonal mapping

>>> R, sca = orthogonal_procrustes(A, np.fliplr(A))
>>> R
array([[-5.34384992e-17,  0.00000000e+00,  1.00000000e+00],
       [ 0.00000000e+00,  1.00000000e+00,  0.00000000e+00],
       [ 1.00000000e+00,  0.00000000e+00, -7.85941422e-17]])
>>> sca
9.0

As an example of the unitary Procrustes problem, generate a
random complex matrix ``A``, a random unitary matrix ``Q``,
and their product ``B``.

>>> shape = (4, 4)
>>> rng = np.random.default_rng(589234981235)
>>> A = rng.random(shape) + rng.random(shape)*1j
>>> Q = rng.random(shape) + rng.random(shape)*1j
>>> Q, _ = np.linalg.qr(Q)
>>> B = A @ Q

`orthogonal_procrustes` recovers the unitary matrix ``Q``
from ``A`` and ``B``.

>>> R, _ = orthogonal_procrustes(A, B)
>>> np.allclose(R, Q)
True



Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé