Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Module « scipy.linalg »
Signature de la fonction schur
def schur(a, output='real', lwork=None, overwrite_a=False, sort=None, check_finite=True)
Description
help(scipy.linalg.schur)
Compute Schur decomposition of a matrix.
The Schur decomposition is::
A = Z T Z^H
where Z is unitary and T is either upper-triangular, or for real
Schur decomposition (output='real'), quasi-upper triangular. In
the quasi-triangular form, 2x2 blocks describing complex-valued
eigenvalue pairs may extrude from the diagonal.
Parameters
----------
a : (M, M) array_like
Matrix to decompose
output : {'real', 'complex'}, optional
When the dtype of `a` is real, this specifies whether to compute
the real or complex Schur decomposition.
When the dtype of `a` is complex, this argument is ignored, and the
complex Schur decomposition is computed.
lwork : int, optional
Work array size. If None or -1, it is automatically computed.
overwrite_a : bool, optional
Whether to overwrite data in a (may improve performance).
sort : {None, callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional
Specifies whether the upper eigenvalues should be sorted. A callable
may be passed that, given an eigenvalue, returns a boolean denoting
whether the eigenvalue should be sorted to the top-left (True).
- If ``output='complex'`` OR the dtype of `a` is complex, the callable
should have one argument: the eigenvalue expressed as a complex number.
- If ``output='real'`` AND the dtype of `a` is real, the callable should have
two arguments: the real and imaginary parts of the eigenvalue, respectively.
Alternatively, string parameters may be used::
'lhp' Left-hand plane (real(eigenvalue) < 0.0)
'rhp' Right-hand plane (real(eigenvalue) >= 0.0)
'iuc' Inside the unit circle (abs(eigenvalue) <= 1.0)
'ouc' Outside the unit circle (abs(eigenvalue) > 1.0)
Defaults to None (no sorting).
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
T : (M, M) ndarray
Schur form of A. It is real-valued for the real Schur decomposition.
Z : (M, M) ndarray
An unitary Schur transformation matrix for A.
It is real-valued for the real Schur decomposition.
sdim : int
If and only if sorting was requested, a third return value will
contain the number of eigenvalues satisfying the sort condition.
Note that complex conjugate pairs for which the condition is true
for either eigenvalue count as 2.
Raises
------
LinAlgError
Error raised under three conditions:
1. The algorithm failed due to a failure of the QR algorithm to
compute all eigenvalues.
2. If eigenvalue sorting was requested, the eigenvalues could not be
reordered due to a failure to separate eigenvalues, usually because
of poor conditioning.
3. If eigenvalue sorting was requested, roundoff errors caused the
leading eigenvalues to no longer satisfy the sorting condition.
See Also
--------
rsf2csf : Convert real Schur form to complex Schur form
Examples
--------
>>> import numpy as np
>>> from scipy.linalg import schur, eigvals
>>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]])
>>> T, Z = schur(A)
>>> T
array([[ 2.65896708, 1.42440458, -1.92933439],
[ 0. , -0.32948354, -0.49063704],
[ 0. , 1.31178921, -0.32948354]])
>>> Z
array([[0.72711591, -0.60156188, 0.33079564],
[0.52839428, 0.79801892, 0.28976765],
[0.43829436, 0.03590414, -0.89811411]])
>>> T2, Z2 = schur(A, output='complex')
>>> T2
array([[ 2.65896708, -1.22839825+1.32378589j, 0.42590089+1.51937378j], # may vary
[ 0. , -0.32948354+0.80225456j, -0.59877807+0.56192146j],
[ 0. , 0. , -0.32948354-0.80225456j]])
>>> eigvals(T2)
array([2.65896708, -0.32948354+0.80225456j, -0.32948354-0.80225456j]) # may vary
A custom eigenvalue-sorting condition that sorts by positive imaginary part
is satisfied by only one eigenvalue.
>>> _, _, sdim = schur(A, output='complex', sort=lambda x: x.imag > 1e-15)
>>> sdim
1
When ``output='real'`` and the array `a` is real, the `sort` callable must accept
the real and imaginary parts as separate arguments. Note that now the complex
eigenvalues ``-0.32948354+0.80225456j`` and ``-0.32948354-0.80225456j`` will be
treated as a complex conjugate pair, and according to the `sdim` documentation,
complex conjugate pairs for which the condition is True for *either* eigenvalue
increase `sdim` by *two*.
>>> _, _, sdim = schur(A, output='real', sort=lambda x, y: y > 1e-15)
>>> sdim
2
Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :