Module « scipy.linalg »
Signature de la fonction eig
def eig(a, b=None, left=False, right=True, overwrite_a=False, overwrite_b=False, check_finite=True, homogeneous_eigvals=False)
Description
eig.__doc__
Solve an ordinary or generalized eigenvalue problem of a square matrix.
Find eigenvalues w and right or left eigenvectors of a general matrix::
a vr[:,i] = w[i] b vr[:,i]
a.H vl[:,i] = w[i].conj() b.H vl[:,i]
where ``.H`` is the Hermitian conjugation.
Parameters
----------
a : (M, M) array_like
A complex or real matrix whose eigenvalues and eigenvectors
will be computed.
b : (M, M) array_like, optional
Right-hand side matrix in a generalized eigenvalue problem.
Default is None, identity matrix is assumed.
left : bool, optional
Whether to calculate and return left eigenvectors. Default is False.
right : bool, optional
Whether to calculate and return right eigenvectors. Default is True.
overwrite_a : bool, optional
Whether to overwrite `a`; may improve performance. Default is False.
overwrite_b : bool, optional
Whether to overwrite `b`; may improve performance. Default is False.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
homogeneous_eigvals : bool, optional
If True, return the eigenvalues in homogeneous coordinates.
In this case ``w`` is a (2, M) array so that::
w[1,i] a vr[:,i] = w[0,i] b vr[:,i]
Default is False.
Returns
-------
w : (M,) or (2, M) double or complex ndarray
The eigenvalues, each repeated according to its
multiplicity. The shape is (M,) unless
``homogeneous_eigvals=True``.
vl : (M, M) double or complex ndarray
The normalized left eigenvector corresponding to the eigenvalue
``w[i]`` is the column vl[:,i]. Only returned if ``left=True``.
vr : (M, M) double or complex ndarray
The normalized right eigenvector corresponding to the eigenvalue
``w[i]`` is the column ``vr[:,i]``. Only returned if ``right=True``.
Raises
------
LinAlgError
If eigenvalue computation does not converge.
See Also
--------
eigvals : eigenvalues of general arrays
eigh : Eigenvalues and right eigenvectors for symmetric/Hermitian arrays.
eig_banded : eigenvalues and right eigenvectors for symmetric/Hermitian
band matrices
eigh_tridiagonal : eigenvalues and right eiegenvectors for
symmetric/Hermitian tridiagonal matrices
Examples
--------
>>> from scipy import linalg
>>> a = np.array([[0., -1.], [1., 0.]])
>>> linalg.eigvals(a)
array([0.+1.j, 0.-1.j])
>>> b = np.array([[0., 1.], [1., 1.]])
>>> linalg.eigvals(a, b)
array([ 1.+0.j, -1.+0.j])
>>> a = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]])
>>> linalg.eigvals(a, homogeneous_eigvals=True)
array([[3.+0.j, 8.+0.j, 7.+0.j],
[1.+0.j, 1.+0.j, 1.+0.j]])
>>> a = np.array([[0., -1.], [1., 0.]])
>>> linalg.eigvals(a) == linalg.eig(a)[0]
array([ True, True])
>>> linalg.eig(a, left=True, right=False)[1] # normalized left eigenvector
array([[-0.70710678+0.j , -0.70710678-0.j ],
[-0. +0.70710678j, -0. -0.70710678j]])
>>> linalg.eig(a, left=False, right=True)[1] # normalized right eigenvector
array([[0.70710678+0.j , 0.70710678-0.j ],
[0. -0.70710678j, 0. +0.70710678j]])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :