Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.linalg »

Fonction qr_delete - module scipy.linalg

Signature de la fonction qr_delete

Description

qr_delete.__doc__

qr_delete(Q, R, k, int p=1, which=u'row', overwrite_qr=False, check_finite=True)

    QR downdate on row or column deletions

    If ``A = Q R`` is the QR factorization of ``A``, return the QR
    factorization of ``A`` where ``p`` rows or columns have been removed
    starting at row or column ``k``.

    Parameters
    ----------
    Q : (M, M) or (M, N) array_like
        Unitary/orthogonal matrix from QR decomposition.
    R : (M, N) or (N, N) array_like
        Upper triangular matrix from QR decomposition.
    k : int
        Index of the first row or column to delete.
    p : int, optional
        Number of rows or columns to delete, defaults to 1.
    which: {'row', 'col'}, optional
        Determines if rows or columns will be deleted, defaults to 'row'
    overwrite_qr : bool, optional
        If True, consume Q and R, overwriting their contents with their
        downdated versions, and returning approriately sized views.
        Defaults to False.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
        Default is True.

    Returns
    -------
    Q1 : ndarray
        Updated unitary/orthogonal factor
    R1 : ndarray
        Updated upper triangular factor

    See Also
    --------
    qr, qr_multiply, qr_insert, qr_update

    Notes
    -----
    This routine does not guarantee that the diagonal entries of ``R1`` are
    positive.

    .. versionadded:: 0.16.0

    References
    ----------
    .. [1] Golub, G. H. & Van Loan, C. F. Matrix Computations, 3rd Ed.
           (Johns Hopkins University Press, 1996).

    .. [2] Daniel, J. W., Gragg, W. B., Kaufman, L. & Stewart, G. W.
           Reorthogonalization and stable algorithms for updating the
           Gram-Schmidt QR factorization. Math. Comput. 30, 772-795 (1976).

    .. [3] Reichel, L. & Gragg, W. B. Algorithm 686: FORTRAN Subroutines for
           Updating the QR Decomposition. ACM Trans. Math. Softw. 16, 369-377
           (1990).

    Examples
    --------
    >>> from scipy import linalg
    >>> a = np.array([[  3.,  -2.,  -2.],
    ...               [  6.,  -9.,  -3.],
    ...               [ -3.,  10.,   1.],
    ...               [  6.,  -7.,   4.],
    ...               [  7.,   8.,  -6.]])
    >>> q, r = linalg.qr(a)

    Given this QR decomposition, update q and r when 2 rows are removed.

    >>> q1, r1 = linalg.qr_delete(q, r, 2, 2, 'row', False)
    >>> q1
    array([[ 0.30942637,  0.15347579,  0.93845645],  # may vary (signs)
           [ 0.61885275,  0.71680171, -0.32127338],
           [ 0.72199487, -0.68017681, -0.12681844]])
    >>> r1
    array([[  9.69535971,  -0.4125685 ,  -6.80738023],  # may vary (signs)
           [  0.        , -12.19958144,   1.62370412],
           [  0.        ,   0.        ,  -0.15218213]])

    The update is equivalent, but faster than the following.

    >>> a1 = np.delete(a, slice(2,4), 0)
    >>> a1
    array([[ 3., -2., -2.],
           [ 6., -9., -3.],
           [ 7.,  8., -6.]])
    >>> q_direct, r_direct = linalg.qr(a1)

    Check that we have equivalent results:

    >>> np.dot(q1, r1)
    array([[ 3., -2., -2.],
           [ 6., -9., -3.],
           [ 7.,  8., -6.]])
    >>> np.allclose(np.dot(q1, r1), a1)
    True

    And the updated Q is still unitary:

    >>> np.allclose(np.dot(q1.T, q1), np.eye(3))
    True