Module « scipy.linalg »
Signature de la fonction qr_delete
Description
qr_delete.__doc__
qr_delete(Q, R, k, int p=1, which=u'row', overwrite_qr=False, check_finite=True)
QR downdate on row or column deletions
If ``A = Q R`` is the QR factorization of ``A``, return the QR
factorization of ``A`` where ``p`` rows or columns have been removed
starting at row or column ``k``.
Parameters
----------
Q : (M, M) or (M, N) array_like
Unitary/orthogonal matrix from QR decomposition.
R : (M, N) or (N, N) array_like
Upper triangular matrix from QR decomposition.
k : int
Index of the first row or column to delete.
p : int, optional
Number of rows or columns to delete, defaults to 1.
which: {'row', 'col'}, optional
Determines if rows or columns will be deleted, defaults to 'row'
overwrite_qr : bool, optional
If True, consume Q and R, overwriting their contents with their
downdated versions, and returning approriately sized views.
Defaults to False.
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Default is True.
Returns
-------
Q1 : ndarray
Updated unitary/orthogonal factor
R1 : ndarray
Updated upper triangular factor
See Also
--------
qr, qr_multiply, qr_insert, qr_update
Notes
-----
This routine does not guarantee that the diagonal entries of ``R1`` are
positive.
.. versionadded:: 0.16.0
References
----------
.. [1] Golub, G. H. & Van Loan, C. F. Matrix Computations, 3rd Ed.
(Johns Hopkins University Press, 1996).
.. [2] Daniel, J. W., Gragg, W. B., Kaufman, L. & Stewart, G. W.
Reorthogonalization and stable algorithms for updating the
Gram-Schmidt QR factorization. Math. Comput. 30, 772-795 (1976).
.. [3] Reichel, L. & Gragg, W. B. Algorithm 686: FORTRAN Subroutines for
Updating the QR Decomposition. ACM Trans. Math. Softw. 16, 369-377
(1990).
Examples
--------
>>> from scipy import linalg
>>> a = np.array([[ 3., -2., -2.],
... [ 6., -9., -3.],
... [ -3., 10., 1.],
... [ 6., -7., 4.],
... [ 7., 8., -6.]])
>>> q, r = linalg.qr(a)
Given this QR decomposition, update q and r when 2 rows are removed.
>>> q1, r1 = linalg.qr_delete(q, r, 2, 2, 'row', False)
>>> q1
array([[ 0.30942637, 0.15347579, 0.93845645], # may vary (signs)
[ 0.61885275, 0.71680171, -0.32127338],
[ 0.72199487, -0.68017681, -0.12681844]])
>>> r1
array([[ 9.69535971, -0.4125685 , -6.80738023], # may vary (signs)
[ 0. , -12.19958144, 1.62370412],
[ 0. , 0. , -0.15218213]])
The update is equivalent, but faster than the following.
>>> a1 = np.delete(a, slice(2,4), 0)
>>> a1
array([[ 3., -2., -2.],
[ 6., -9., -3.],
[ 7., 8., -6.]])
>>> q_direct, r_direct = linalg.qr(a1)
Check that we have equivalent results:
>>> np.dot(q1, r1)
array([[ 3., -2., -2.],
[ 6., -9., -3.],
[ 7., 8., -6.]])
>>> np.allclose(np.dot(q1, r1), a1)
True
And the updated Q is still unitary:
>>> np.allclose(np.dot(q1.T, q1), np.eye(3))
True
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :