Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Contenu du module « scipy.linalg »

Liste des exceptions du module scipy.linalg

Nom de la classe d'exception Description
LinAlgError
LinAlgWarning

Liste des fonctions du module scipy.linalg

Signature de la fonction Description
block_diag(*arrs)
cdf2rdf(w, v)
cho_factor(a, lower=False, overwrite_a=False, check_finite=True)
cho_solve(c_and_lower, b, overwrite_b=False, check_finite=True) Solve the linear equations A x = b, given the Cholesky factorization of A. [extrait de cho_solve.__doc__]
cho_solve_banded(cb_and_lower, b, overwrite_b=False, check_finite=True)
cholesky(a, lower=False, overwrite_a=False, check_finite=True)
cholesky_banded(ab, overwrite_ab=False, lower=False, check_finite=True)
circulant(c)
clarkson_woodruff_transform(input_matrix, sketch_size, seed=None)
companion(a)
convolution_matrix(a, n, mode='full')
coshm(A)
cosm(A)
cossin(X, p=None, q=None, separate=False, swap_sign=False, compute_u=True, compute_vh=True)
det(a, overwrite_a=False, check_finite=True)
dft(n, scale=None)
diagsvd(s, M, N)
eig(a, b=None, left=False, right=True, overwrite_a=False, overwrite_b=False, check_finite=True, homogeneous_eigvals=False)
eig_banded(a_band, lower=False, eigvals_only=False, overwrite_a_band=False, select='a', select_range=None, max_ev=0, check_finite=True)
eigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False, overwrite_b=False, turbo=True, eigvals=None, type=1, check_finite=True, subset_by_index=None, subset_by_value=None, driver=None)
eigh_tridiagonal(d, e, eigvals_only=False, select='a', select_range=None, check_finite=True, tol=0.0, lapack_driver='auto')
eigvals(a, b=None, overwrite_a=False, check_finite=True, homogeneous_eigvals=False)
eigvals_banded(a_band, lower=False, overwrite_a_band=False, select='a', select_range=None, check_finite=True)
eigvalsh(a, b=None, lower=True, overwrite_a=False, overwrite_b=False, turbo=True, eigvals=None, type=1, check_finite=True, subset_by_index=None, subset_by_value=None, driver=None)
eigvalsh_tridiagonal(d, e, select='a', select_range=None, check_finite=True, tol=0.0, lapack_driver='auto')
expm(A)
expm_cond(A, check_finite=True)
expm_frechet(A, E, method=None, compute_expm=True, check_finite=True)
fiedler(a) Returns a symmetric Fiedler matrix [extrait de fiedler.__doc__]
fiedler_companion(a) Returns a Fiedler companion matrix [extrait de fiedler_companion.__doc__]
find_best_blas_type(arrays=(), dtype=None) Find best-matching BLAS/LAPACK type. [extrait de find_best_blas_type.__doc__]
fractional_matrix_power(A, t)
funm(A, func, disp=True)
get_blas_funcs(names, arrays=(), dtype=None, ilp64=False) Return available BLAS function objects from names. [extrait de get_blas_funcs.__doc__]
get_lapack_funcs(names, arrays=(), dtype=None, ilp64=False) Return available LAPACK function objects from names. [extrait de get_lapack_funcs.__doc__]
hadamard(n, dtype=<class 'int'>)
hankel(c, r=None)
helmert(n, full=False)
hessenberg(a, calc_q=False, overwrite_a=False, check_finite=True)
hilbert(n)
inv(a, overwrite_a=False, check_finite=True)
invhilbert(n, exact=False)
invpascal(n, kind='symmetric', exact=True)
khatri_rao(a, b)
kron(a, b)
ldl(A, lower=True, hermitian=True, overwrite_a=False, check_finite=True) Computes the LDLt or Bunch-Kaufman factorization of a symmetric/ [extrait de ldl.__doc__]
leslie(f, s)
logm(A, disp=True)
lstsq(a, b, cond=None, overwrite_a=False, overwrite_b=False, check_finite=True, lapack_driver=None)
lu(a, permute_l=False, overwrite_a=False, check_finite=True)
lu_factor(a, overwrite_a=False, check_finite=True)
lu_solve(lu_and_piv, b, trans=0, overwrite_b=False, check_finite=True) Solve an equation system, a x = b, given the LU factorization of a [extrait de lu_solve.__doc__]
matmul_toeplitz(c_or_cr, x, check_finite=False, workers=None) Efficient Toeplitz Matrix-Matrix Multiplication using FFT [extrait de matmul_toeplitz.__doc__]
matrix_balance(A, permute=True, scale=True, separate=False, overwrite_a=False)
norm(a, ord=None, axis=None, keepdims=False, check_finite=True)
null_space(A, rcond=None)
ordqz(A, B, sort='lhp', output='real', overwrite_a=False, overwrite_b=False, check_finite=True) QZ decomposition for a pair of matrices with reordering. [extrait de ordqz.__doc__]
orth(A, rcond=None)
orthogonal_procrustes(A, B, check_finite=True)
pascal(n, kind='symmetric', exact=True)
pinv(a, atol=None, rtol=None, return_rank=False, check_finite=True, cond=None, rcond=None)
pinv2(a, cond=None, rcond=None, return_rank=False, check_finite=True)
pinvh(a, atol=None, rtol=None, lower=True, return_rank=False, check_finite=True, cond=None, rcond=None)
polar(a, side='right')
qr(a, overwrite_a=False, lwork=None, mode='full', pivoting=False, check_finite=True)
qr_delete qr_delete(Q, R, k, int p=1, which=u'row', overwrite_qr=False, check_finite=True) [extrait de qr_delete.__doc__]
qr_insert qr_insert(Q, R, u, k, which=u'row', rcond=None, overwrite_qru=False, check_finite=True) [extrait de qr_insert.__doc__]
qr_multiply(a, c, mode='right', pivoting=False, conjugate=False, overwrite_a=False, overwrite_c=False)
qr_update qr_update(Q, R, u, v, overwrite_qruv=False, check_finite=True) [extrait de qr_update.__doc__]
qz(A, B, output='real', lwork=None, sort=None, overwrite_a=False, overwrite_b=False, check_finite=True)
rq(a, overwrite_a=False, lwork=None, mode='full', check_finite=True)
rsf2csf(T, Z, check_finite=True)
schur(a, output='real', lwork=None, overwrite_a=False, sort=None, check_finite=True)
signm(A, disp=True)
sinhm(A)
sinm(A)
solve(a, b, sym_pos=False, lower=False, overwrite_a=False, overwrite_b=False, debug=None, check_finite=True, assume_a='gen', transposed=False)
solve_banded(l_and_u, ab, b, overwrite_ab=False, overwrite_b=False, debug=None, check_finite=True)
solve_circulant(c, b, singular='raise', tol=None, caxis=-1, baxis=0, outaxis=0) Solve C x = b for x, where C is a circulant matrix. [extrait de solve_circulant.__doc__]
solve_continuous_are(a, b, q, r, e=None, s=None, balanced=True)
solve_continuous_lyapunov(a, q)
solve_discrete_are(a, b, q, r, e=None, s=None, balanced=True)
solve_discrete_lyapunov(a, q, method=None)
solve_sylvester(a, b, q)
solve_toeplitz(c_or_cr, b, check_finite=True) Solve a Toeplitz system using Levinson Recursion [extrait de solve_toeplitz.__doc__]
solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False, overwrite_b=False, debug=None, check_finite=True)
solveh_banded(ab, b, overwrite_ab=False, overwrite_b=False, lower=False, check_finite=True)
sqrtm(A, disp=True, blocksize=64)
subspace_angles(A, B)
svd(a, full_matrices=True, compute_uv=True, overwrite_a=False, check_finite=True, lapack_driver='gesdd')
svdvals(a, overwrite_a=False, check_finite=True)
tanhm(A)
tanm(A)
test(label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, tests=None, parallel=None)
toeplitz(c, r=None)
tri(N, M=None, k=0, dtype=None)
tril(m, k=0)
triu(m, k=0)

Liste des alias du module scipy.linalg

Nom de l'alias Définition ciblée
solve_lyapunov solve_continuous_lyapunov