block_diag(*arrs) |
|
cdf2rdf(w, v) |
|
cho_factor(a, lower=False, overwrite_a=False, check_finite=True) |
|
cho_solve(c_and_lower, b, overwrite_b=False, check_finite=True) |
Solve the linear equations A x = b, given the Cholesky factorization of A. [extrait de cho_solve.__doc__] |
cho_solve_banded(cb_and_lower, b, overwrite_b=False, check_finite=True) |
|
cholesky(a, lower=False, overwrite_a=False, check_finite=True) |
|
cholesky_banded(ab, overwrite_ab=False, lower=False, check_finite=True) |
|
circulant(c) |
|
clarkson_woodruff_transform(input_matrix, sketch_size, seed=None) |
|
companion(a) |
|
convolution_matrix(a, n, mode='full') |
|
coshm(A) |
|
cosm(A) |
|
cossin(X, p=None, q=None, separate=False, swap_sign=False, compute_u=True, compute_vh=True) |
|
det(a, overwrite_a=False, check_finite=True) |
|
dft(n, scale=None) |
|
diagsvd(s, M, N) |
|
eig(a, b=None, left=False, right=True, overwrite_a=False, overwrite_b=False, check_finite=True, homogeneous_eigvals=False) |
|
eig_banded(a_band, lower=False, eigvals_only=False, overwrite_a_band=False, select='a', select_range=None, max_ev=0, check_finite=True) |
|
eigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False, overwrite_b=False, turbo=True, eigvals=None, type=1, check_finite=True, subset_by_index=None, subset_by_value=None, driver=None) |
|
eigh_tridiagonal(d, e, eigvals_only=False, select='a', select_range=None, check_finite=True, tol=0.0, lapack_driver='auto') |
|
eigvals(a, b=None, overwrite_a=False, check_finite=True, homogeneous_eigvals=False) |
|
eigvals_banded(a_band, lower=False, overwrite_a_band=False, select='a', select_range=None, check_finite=True) |
|
eigvalsh(a, b=None, lower=True, overwrite_a=False, overwrite_b=False, turbo=True, eigvals=None, type=1, check_finite=True, subset_by_index=None, subset_by_value=None, driver=None) |
|
eigvalsh_tridiagonal(d, e, select='a', select_range=None, check_finite=True, tol=0.0, lapack_driver='auto') |
|
expm(A) |
|
expm_cond(A, check_finite=True) |
|
expm_frechet(A, E, method=None, compute_expm=True, check_finite=True) |
|
fiedler(a) |
Returns a symmetric Fiedler matrix [extrait de fiedler.__doc__] |
fiedler_companion(a) |
Returns a Fiedler companion matrix [extrait de fiedler_companion.__doc__] |
find_best_blas_type(arrays=(), dtype=None) |
Find best-matching BLAS/LAPACK type. [extrait de find_best_blas_type.__doc__] |
fractional_matrix_power(A, t) |
|
funm(A, func, disp=True) |
|
get_blas_funcs(names, arrays=(), dtype=None, ilp64=False) |
Return available BLAS function objects from names. [extrait de get_blas_funcs.__doc__] |
get_lapack_funcs(names, arrays=(), dtype=None, ilp64=False) |
Return available LAPACK function objects from names. [extrait de get_lapack_funcs.__doc__] |
hadamard(n, dtype=<class 'int'>) |
|
hankel(c, r=None) |
|
helmert(n, full=False) |
|
hessenberg(a, calc_q=False, overwrite_a=False, check_finite=True) |
|
hilbert(n) |
|
inv(a, overwrite_a=False, check_finite=True) |
|
invhilbert(n, exact=False) |
|
invpascal(n, kind='symmetric', exact=True) |
|
khatri_rao(a, b) |
|
kron(a, b) |
|
ldl(A, lower=True, hermitian=True, overwrite_a=False, check_finite=True) |
Computes the LDLt or Bunch-Kaufman factorization of a symmetric/ [extrait de ldl.__doc__] |
leslie(f, s) |
|
logm(A, disp=True) |
|
lstsq(a, b, cond=None, overwrite_a=False, overwrite_b=False, check_finite=True, lapack_driver=None) |
|
lu(a, permute_l=False, overwrite_a=False, check_finite=True) |
|
lu_factor(a, overwrite_a=False, check_finite=True) |
|
lu_solve(lu_and_piv, b, trans=0, overwrite_b=False, check_finite=True) |
Solve an equation system, a x = b, given the LU factorization of a [extrait de lu_solve.__doc__] |
matmul_toeplitz(c_or_cr, x, check_finite=False, workers=None) |
Efficient Toeplitz Matrix-Matrix Multiplication using FFT [extrait de matmul_toeplitz.__doc__] |
matrix_balance(A, permute=True, scale=True, separate=False, overwrite_a=False) |
|
norm(a, ord=None, axis=None, keepdims=False, check_finite=True) |
|
null_space(A, rcond=None) |
|
ordqz(A, B, sort='lhp', output='real', overwrite_a=False, overwrite_b=False, check_finite=True) |
QZ decomposition for a pair of matrices with reordering. [extrait de ordqz.__doc__] |
orth(A, rcond=None) |
|
orthogonal_procrustes(A, B, check_finite=True) |
|
pascal(n, kind='symmetric', exact=True) |
|
pinv(a, atol=None, rtol=None, return_rank=False, check_finite=True, cond=None, rcond=None) |
|
pinv2(a, cond=None, rcond=None, return_rank=False, check_finite=True) |
|
pinvh(a, atol=None, rtol=None, lower=True, return_rank=False, check_finite=True, cond=None, rcond=None) |
|
polar(a, side='right') |
|
qr(a, overwrite_a=False, lwork=None, mode='full', pivoting=False, check_finite=True) |
|
qr_delete |
qr_delete(Q, R, k, int p=1, which=u'row', overwrite_qr=False, check_finite=True) [extrait de qr_delete.__doc__] |
qr_insert |
qr_insert(Q, R, u, k, which=u'row', rcond=None, overwrite_qru=False, check_finite=True) [extrait de qr_insert.__doc__] |
qr_multiply(a, c, mode='right', pivoting=False, conjugate=False, overwrite_a=False, overwrite_c=False) |
|
qr_update |
qr_update(Q, R, u, v, overwrite_qruv=False, check_finite=True) [extrait de qr_update.__doc__] |
qz(A, B, output='real', lwork=None, sort=None, overwrite_a=False, overwrite_b=False, check_finite=True) |
|
rq(a, overwrite_a=False, lwork=None, mode='full', check_finite=True) |
|
rsf2csf(T, Z, check_finite=True) |
|
schur(a, output='real', lwork=None, overwrite_a=False, sort=None, check_finite=True) |
|
signm(A, disp=True) |
|
sinhm(A) |
|
sinm(A) |
|
solve(a, b, sym_pos=False, lower=False, overwrite_a=False, overwrite_b=False, debug=None, check_finite=True, assume_a='gen', transposed=False) |
|
solve_banded(l_and_u, ab, b, overwrite_ab=False, overwrite_b=False, debug=None, check_finite=True) |
|
solve_circulant(c, b, singular='raise', tol=None, caxis=-1, baxis=0, outaxis=0) |
Solve C x = b for x, where C is a circulant matrix. [extrait de solve_circulant.__doc__] |
solve_continuous_are(a, b, q, r, e=None, s=None, balanced=True) |
|
solve_continuous_lyapunov(a, q) |
|
solve_discrete_are(a, b, q, r, e=None, s=None, balanced=True) |
|
solve_discrete_lyapunov(a, q, method=None) |
|
solve_sylvester(a, b, q) |
|
solve_toeplitz(c_or_cr, b, check_finite=True) |
Solve a Toeplitz system using Levinson Recursion [extrait de solve_toeplitz.__doc__] |
solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False, overwrite_b=False, debug=None, check_finite=True) |
|
solveh_banded(ab, b, overwrite_ab=False, overwrite_b=False, lower=False, check_finite=True) |
|
sqrtm(A, disp=True, blocksize=64) |
|
subspace_angles(A, B) |
|
svd(a, full_matrices=True, compute_uv=True, overwrite_a=False, check_finite=True, lapack_driver='gesdd') |
|
svdvals(a, overwrite_a=False, check_finite=True) |
|
tanhm(A) |
|
tanm(A) |
|
test(label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, tests=None, parallel=None) |
|
toeplitz(c, r=None) |
|
tri(N, M=None, k=0, dtype=None) |
|
tril(m, k=0) |
|
triu(m, k=0) |
|
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :