Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé
Module « scipy.linalg »

Fonction lu_factor - module scipy.linalg

Signature de la fonction lu_factor

def lu_factor(a, overwrite_a=False, check_finite=True) 

Description

help(scipy.linalg.lu_factor)

Compute pivoted LU decomposition of a matrix.

The decomposition is::

    A = P L U

where P is a permutation matrix, L lower triangular with unit
diagonal elements, and U upper triangular.

Parameters
----------
a : (M, N) array_like
    Matrix to decompose
overwrite_a : bool, optional
    Whether to overwrite data in A (may increase performance)
check_finite : bool, optional
    Whether to check that the input matrix contains only finite numbers.
    Disabling may give a performance gain, but may result in problems
    (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns
-------
lu : (M, N) ndarray
    Matrix containing U in its upper triangle, and L in its lower triangle.
    The unit diagonal elements of L are not stored.
piv : (K,) ndarray
    Pivot indices representing the permutation matrix P:
    row i of matrix was interchanged with row piv[i].
    Of shape ``(K,)``, with ``K = min(M, N)``.

See Also
--------
lu : gives lu factorization in more user-friendly format
lu_solve : solve an equation system using the LU factorization of a matrix

Notes
-----
This is a wrapper to the ``*GETRF`` routines from LAPACK. Unlike
:func:`lu`, it outputs the L and U factors into a single array
and returns pivot indices instead of a permutation matrix.

While the underlying ``*GETRF`` routines return 1-based pivot indices, the
``piv`` array returned by ``lu_factor`` contains 0-based indices.

Examples
--------
>>> import numpy as np
>>> from scipy.linalg import lu_factor
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
>>> lu, piv = lu_factor(A)
>>> piv
array([2, 2, 3, 3], dtype=int32)

Convert LAPACK's ``piv`` array to NumPy index and test the permutation

>>> def pivot_to_permutation(piv):
...     perm = np.arange(len(piv))
...     for i in range(len(piv)):
...         perm[i], perm[piv[i]] = perm[piv[i]], perm[i]
...     return perm
...
>>> p_inv = pivot_to_permutation(piv)
>>> p_inv
array([2, 0, 3, 1])
>>> L, U = np.tril(lu, k=-1) + np.eye(4), np.triu(lu)
>>> np.allclose(A[p_inv] - L @ U, np.zeros((4, 4)))
True

The P matrix in P L U is defined by the inverse permutation and
can be recovered using argsort:

>>> p = np.argsort(p_inv)
>>> p
array([1, 3, 0, 2])
>>> np.allclose(A - L[p] @ U, np.zeros((4, 4)))
True

or alternatively:

>>> P = np.eye(4)[p]
>>> np.allclose(A - P @ L @ U, np.zeros((4, 4)))
True


Vous êtes un professionnel et vous avez besoin d'une formation ? Calcul scientifique
avec Python
Voir le programme détaillé