Module « scipy.linalg »
Signature de la fonction hessenberg
def hessenberg(a, calc_q=False, overwrite_a=False, check_finite=True)
Description
hessenberg.__doc__
Compute Hessenberg form of a matrix.
The Hessenberg decomposition is::
A = Q H Q^H
where `Q` is unitary/orthogonal and `H` has only zero elements below
the first sub-diagonal.
Parameters
----------
a : (M, M) array_like
Matrix to bring into Hessenberg form.
calc_q : bool, optional
Whether to compute the transformation matrix. Default is False.
overwrite_a : bool, optional
Whether to overwrite `a`; may improve performance.
Default is False.
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
H : (M, M) ndarray
Hessenberg form of `a`.
Q : (M, M) ndarray
Unitary/orthogonal similarity transformation matrix ``A = Q H Q^H``.
Only returned if ``calc_q=True``.
Examples
--------
>>> from scipy.linalg import hessenberg
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
>>> H, Q = hessenberg(A, calc_q=True)
>>> H
array([[ 2. , -11.65843866, 1.42005301, 0.25349066],
[ -9.94987437, 14.53535354, -5.31022304, 2.43081618],
[ 0. , -1.83299243, 0.38969961, -0.51527034],
[ 0. , 0. , -3.83189513, 1.07494686]])
>>> np.allclose(Q @ H @ Q.conj().T - A, np.zeros((4, 4)))
True
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :