Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.linalg »

Fonction convolution_matrix - module scipy.linalg

Signature de la fonction convolution_matrix

def convolution_matrix(a, n, mode='full') 

Description

convolution_matrix.__doc__

    Construct a convolution matrix.

    Constructs the Toeplitz matrix representing one-dimensional
    convolution [1]_.  See the notes below for details.

    Parameters
    ----------
    a : (m,) array_like
        The 1-D array to convolve.
    n : int
        The number of columns in the resulting matrix.  It gives the length
        of the input to be convolved with `a`.  This is analogous to the
        length of `v` in ``numpy.convolve(a, v)``.
    mode : str
        This is analogous to `mode` in ``numpy.convolve(v, a, mode)``.
        It must be one of ('full', 'valid', 'same').
        See below for how `mode` determines the shape of the result.

    Returns
    -------
    A : (k, n) ndarray
        The convolution matrix whose row count `k` depends on `mode`::

            =======  =========================
             mode    k
            =======  =========================
            'full'   m + n -1
            'same'   max(m, n)
            'valid'  max(m, n) - min(m, n) + 1
            =======  =========================

    See Also
    --------
    toeplitz : Toeplitz matrix

    Notes
    -----
    The code::

        A = convolution_matrix(a, n, mode)

    creates a Toeplitz matrix `A` such that ``A @ v`` is equivalent to
    using ``convolve(a, v, mode)``.  The returned array always has `n`
    columns.  The number of rows depends on the specified `mode`, as
    explained above.

    In the default 'full' mode, the entries of `A` are given by::

        A[i, j] == (a[i-j] if (0 <= (i-j) < m) else 0)

    where ``m = len(a)``.  Suppose, for example, the input array is
    ``[x, y, z]``.  The convolution matrix has the form::

        [x, 0, 0, ..., 0, 0]
        [y, x, 0, ..., 0, 0]
        [z, y, x, ..., 0, 0]
        ...
        [0, 0, 0, ..., x, 0]
        [0, 0, 0, ..., y, x]
        [0, 0, 0, ..., z, y]
        [0, 0, 0, ..., 0, z]

    In 'valid' mode, the entries of `A` are given by::

        A[i, j] == (a[i-j+m-1] if (0 <= (i-j+m-1) < m) else 0)

    This corresponds to a matrix whose rows are the subset of those from
    the 'full' case where all the coefficients in `a` are contained in the
    row.  For input ``[x, y, z]``, this array looks like::

        [z, y, x, 0, 0, ..., 0, 0, 0]
        [0, z, y, x, 0, ..., 0, 0, 0]
        [0, 0, z, y, x, ..., 0, 0, 0]
        ...
        [0, 0, 0, 0, 0, ..., x, 0, 0]
        [0, 0, 0, 0, 0, ..., y, x, 0]
        [0, 0, 0, 0, 0, ..., z, y, x]

    In the 'same' mode, the entries of `A` are given by::

        d = (m - 1) // 2
        A[i, j] == (a[i-j+d] if (0 <= (i-j+d) < m) else 0)

    The typical application of the 'same' mode is when one has a signal of
    length `n` (with `n` greater than ``len(a)``), and the desired output
    is a filtered signal that is still of length `n`.

    For input ``[x, y, z]``, this array looks like::

        [y, x, 0, 0, ..., 0, 0, 0]
        [z, y, x, 0, ..., 0, 0, 0]
        [0, z, y, x, ..., 0, 0, 0]
        [0, 0, z, y, ..., 0, 0, 0]
        ...
        [0, 0, 0, 0, ..., y, x, 0]
        [0, 0, 0, 0, ..., z, y, x]
        [0, 0, 0, 0, ..., 0, z, y]

    .. versionadded:: 1.5.0

    References
    ----------
    .. [1] "Convolution", https://en.wikipedia.org/wiki/Convolution

    Examples
    --------
    >>> from scipy.linalg import convolution_matrix
    >>> A = convolution_matrix([-1, 4, -2], 5, mode='same')
    >>> A
    array([[ 4, -1,  0,  0,  0],
           [-2,  4, -1,  0,  0],
           [ 0, -2,  4, -1,  0],
           [ 0,  0, -2,  4, -1],
           [ 0,  0,  0, -2,  4]])

    Compare multiplication by `A` with the use of `numpy.convolve`.

    >>> x = np.array([1, 2, 0, -3, 0.5])
    >>> A @ x
    array([  2. ,   6. ,  -1. , -12.5,   8. ])

    Verify that ``A @ x`` produced the same result as applying the
    convolution function.

    >>> np.convolve([-1, 4, -2], x, mode='same')
    array([  2. ,   6. ,  -1. , -12.5,   8. ])

    For comparison to the case ``mode='same'`` shown above, here are the
    matrices produced by ``mode='full'`` and ``mode='valid'`` for the
    same coefficients and size.

    >>> convolution_matrix([-1, 4, -2], 5, mode='full')
    array([[-1,  0,  0,  0,  0],
           [ 4, -1,  0,  0,  0],
           [-2,  4, -1,  0,  0],
           [ 0, -2,  4, -1,  0],
           [ 0,  0, -2,  4, -1],
           [ 0,  0,  0, -2,  4],
           [ 0,  0,  0,  0, -2]])

    >>> convolution_matrix([-1, 4, -2], 5, mode='valid')
    array([[-2,  4, -1,  0,  0],
           [ 0, -2,  4, -1,  0],
           [ 0,  0, -2,  4, -1]])