Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé
Module « scipy.linalg »

Fonction qr_insert - module scipy.linalg

Signature de la fonction qr_insert

def qr_insert(Q, R, u, k, which='row', rcond=None, overwrite_qru=False, check_finite=True) 

Description

help(scipy.linalg.qr_insert)

qr_insert(Q, R, u, k, which=u'row', rcond=None, overwrite_qru=False, check_finite=True)


    QR update on row or column insertions



    If ``A = Q R`` is the QR factorization of ``A``, return the QR

    factorization of ``A`` where rows or columns have been inserted starting

    at row or column ``k``.



    Parameters

    ----------

    Q : (M, M) array_like

        Unitary/orthogonal matrix from the QR decomposition of A.

    R : (M, N) array_like

        Upper triangular matrix from the QR decomposition of A.

    u : (N,), (p, N), (M,), or (M, p) array_like

        Rows or columns to insert

    k : int

        Index before which `u` is to be inserted.

    which: {'row', 'col'}, optional

        Determines if rows or columns will be inserted, defaults to 'row'

    rcond : float

        Lower bound on the reciprocal condition number of ``Q`` augmented with

        ``u/||u||`` Only used when updating economic mode (thin, (M,N) (N,N))

        decompositions.  If None, machine precision is used.  Defaults to

        None.

    overwrite_qru : bool, optional

        If True, consume Q, R, and u, if possible, while performing the update,

        otherwise make copies as necessary. Defaults to False.

    check_finite : bool, optional

        Whether to check that the input matrices contain only finite numbers.

        Disabling may give a performance gain, but may result in problems

        (crashes, non-termination) if the inputs do contain infinities or NaNs.

        Default is True.



    Returns

    -------

    Q1 : ndarray

        Updated unitary/orthogonal factor

    R1 : ndarray

        Updated upper triangular factor



    Raises

    ------

    LinAlgError :

        If updating a (M,N) (N,N) factorization and the reciprocal condition

        number of Q augmented with ``u/||u||`` is smaller than rcond.



    See Also

    --------

    qr, qr_multiply, qr_delete, qr_update



    Notes

    -----

    This routine does not guarantee that the diagonal entries of ``R1`` are

    positive.



    .. versionadded:: 0.16.0



    References

    ----------



    .. [1] Golub, G. H. & Van Loan, C. F. Matrix Computations, 3rd Ed.

           (Johns Hopkins University Press, 1996).



    .. [2] Daniel, J. W., Gragg, W. B., Kaufman, L. & Stewart, G. W.

           Reorthogonalization and stable algorithms for updating the

           Gram-Schmidt QR factorization. Math. Comput. 30, 772-795 (1976).



    .. [3] Reichel, L. & Gragg, W. B. Algorithm 686: FORTRAN Subroutines for

           Updating the QR Decomposition. ACM Trans. Math. Softw. 16, 369-377

           (1990).



    Examples

    --------

    >>> import numpy as np

    >>> from scipy import linalg

    >>> a = np.array([[  3.,  -2.,  -2.],

    ...               [  6.,  -7.,   4.],

    ...               [  7.,   8.,  -6.]])

    >>> q, r = linalg.qr(a)



    Given this QR decomposition, update q and r when 2 rows are inserted.



    >>> u = np.array([[  6.,  -9.,  -3.],

    ...               [ -3.,  10.,   1.]])

    >>> q1, r1 = linalg.qr_insert(q, r, u, 2, 'row')

    >>> q1

    array([[-0.25445668,  0.02246245,  0.18146236, -0.72798806,  0.60979671],  # may vary (signs)

           [-0.50891336,  0.23226178, -0.82836478, -0.02837033, -0.00828114],

           [-0.50891336,  0.35715302,  0.38937158,  0.58110733,  0.35235345],

           [ 0.25445668, -0.52202743, -0.32165498,  0.36263239,  0.65404509],

           [-0.59373225, -0.73856549,  0.16065817, -0.0063658 , -0.27595554]])

    >>> r1

    array([[-11.78982612,   6.44623587,   3.81685018],  # may vary (signs)

           [  0.        , -16.01393278,   3.72202865],

           [  0.        ,   0.        ,  -6.13010256],

           [  0.        ,   0.        ,   0.        ],

           [  0.        ,   0.        ,   0.        ]])



    The update is equivalent, but faster than the following.



    >>> a1 = np.insert(a, 2, u, 0)

    >>> a1

    array([[  3.,  -2.,  -2.],

           [  6.,  -7.,   4.],

           [  6.,  -9.,  -3.],

           [ -3.,  10.,   1.],

           [  7.,   8.,  -6.]])

    >>> q_direct, r_direct = linalg.qr(a1)



    Check that we have equivalent results:



    >>> np.dot(q1, r1)

    array([[  3.,  -2.,  -2.],

           [  6.,  -7.,   4.],

           [  6.,  -9.,  -3.],

           [ -3.,  10.,   1.],

           [  7.,   8.,  -6.]])



    >>> np.allclose(np.dot(q1, r1), a1)

    True



    And the updated Q is still unitary:



    >>> np.allclose(np.dot(q1.T, q1), np.eye(5))

    True



    


Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les fondamentaux
Voir le programme détaillé