Module « scipy.linalg »
Signature de la fonction eigh
def eigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False, overwrite_b=False, turbo=True, eigvals=None, type=1, check_finite=True, subset_by_index=None, subset_by_value=None, driver=None)
Description
eigh.__doc__
Solve a standard or generalized eigenvalue problem for a complex
Hermitian or real symmetric matrix.
Find eigenvalues array ``w`` and optionally eigenvectors array ``v`` of
array ``a``, where ``b`` is positive definite such that for every
eigenvalue λ (i-th entry of w) and its eigenvector ``vi`` (i-th column of
``v``) satisfies::
a @ vi = λ * b @ vi
vi.conj().T @ a @ vi = λ
vi.conj().T @ b @ vi = 1
In the standard problem, ``b`` is assumed to be the identity matrix.
Parameters
----------
a : (M, M) array_like
A complex Hermitian or real symmetric matrix whose eigenvalues and
eigenvectors will be computed.
b : (M, M) array_like, optional
A complex Hermitian or real symmetric definite positive matrix in.
If omitted, identity matrix is assumed.
lower : bool, optional
Whether the pertinent array data is taken from the lower or upper
triangle of ``a`` and, if applicable, ``b``. (Default: lower)
eigvals_only : bool, optional
Whether to calculate only eigenvalues and no eigenvectors.
(Default: both are calculated)
subset_by_index : iterable, optional
If provided, this two-element iterable defines the start and the end
indices of the desired eigenvalues (ascending order and 0-indexed).
To return only the second smallest to fifth smallest eigenvalues,
``[1, 4]`` is used. ``[n-3, n-1]`` returns the largest three. Only
available with "evr", "evx", and "gvx" drivers. The entries are
directly converted to integers via ``int()``.
subset_by_value : iterable, optional
If provided, this two-element iterable defines the half-open interval
``(a, b]`` that, if any, only the eigenvalues between these values
are returned. Only available with "evr", "evx", and "gvx" drivers. Use
``np.inf`` for the unconstrained ends.
driver: str, optional
Defines which LAPACK driver should be used. Valid options are "ev",
"evd", "evr", "evx" for standard problems and "gv", "gvd", "gvx" for
generalized (where b is not None) problems. See the Notes section.
type : int, optional
For the generalized problems, this keyword specifies the problem type
to be solved for ``w`` and ``v`` (only takes 1, 2, 3 as possible
inputs)::
1 => a @ v = w @ b @ v
2 => a @ b @ v = w @ v
3 => b @ a @ v = w @ v
This keyword is ignored for standard problems.
overwrite_a : bool, optional
Whether to overwrite data in ``a`` (may improve performance). Default
is False.
overwrite_b : bool, optional
Whether to overwrite data in ``b`` (may improve performance). Default
is False.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
turbo : bool, optional
*Deprecated since v1.5.0, use ``driver=gvd`` keyword instead*.
Use divide and conquer algorithm (faster but expensive in memory, only
for generalized eigenvalue problem and if full set of eigenvalues are
requested.). Has no significant effect if eigenvectors are not
requested.
eigvals : tuple (lo, hi), optional
*Deprecated since v1.5.0, use ``subset_by_index`` keyword instead*.
Indexes of the smallest and largest (in ascending order) eigenvalues
and corresponding eigenvectors to be returned: 0 <= lo <= hi <= M-1.
If omitted, all eigenvalues and eigenvectors are returned.
Returns
-------
w : (N,) ndarray
The N (1<=N<=M) selected eigenvalues, in ascending order, each
repeated according to its multiplicity.
v : (M, N) ndarray
(if ``eigvals_only == False``)
Raises
------
LinAlgError
If eigenvalue computation does not converge, an error occurred, or
b matrix is not definite positive. Note that if input matrices are
not symmetric or Hermitian, no error will be reported but results will
be wrong.
See Also
--------
eigvalsh : eigenvalues of symmetric or Hermitian arrays
eig : eigenvalues and right eigenvectors for non-symmetric arrays
eigh_tridiagonal : eigenvalues and right eiegenvectors for
symmetric/Hermitian tridiagonal matrices
Notes
-----
This function does not check the input array for being Hermitian/symmetric
in order to allow for representing arrays with only their upper/lower
triangular parts. Also, note that even though not taken into account,
finiteness check applies to the whole array and unaffected by "lower"
keyword.
This function uses LAPACK drivers for computations in all possible keyword
combinations, prefixed with ``sy`` if arrays are real and ``he`` if
complex, e.g., a float array with "evr" driver is solved via
"syevr", complex arrays with "gvx" driver problem is solved via "hegvx"
etc.
As a brief summary, the slowest and the most robust driver is the
classical ``<sy/he>ev`` which uses symmetric QR. ``<sy/he>evr`` is seen as
the optimal choice for the most general cases. However, there are certain
occasions that ``<sy/he>evd`` computes faster at the expense of more
memory usage. ``<sy/he>evx``, while still being faster than ``<sy/he>ev``,
often performs worse than the rest except when very few eigenvalues are
requested for large arrays though there is still no performance guarantee.
For the generalized problem, normalization with respect to the given
type argument::
type 1 and 3 : v.conj().T @ a @ v = w
type 2 : inv(v).conj().T @ a @ inv(v) = w
type 1 or 2 : v.conj().T @ b @ v = I
type 3 : v.conj().T @ inv(b) @ v = I
Examples
--------
>>> from scipy.linalg import eigh
>>> A = np.array([[6, 3, 1, 5], [3, 0, 5, 1], [1, 5, 6, 2], [5, 1, 2, 2]])
>>> w, v = eigh(A)
>>> np.allclose(A @ v - v @ np.diag(w), np.zeros((4, 4)))
True
Request only the eigenvalues
>>> w = eigh(A, eigvals_only=True)
Request eigenvalues that are less than 10.
>>> A = np.array([[34, -4, -10, -7, 2],
... [-4, 7, 2, 12, 0],
... [-10, 2, 44, 2, -19],
... [-7, 12, 2, 79, -34],
... [2, 0, -19, -34, 29]])
>>> eigh(A, eigvals_only=True, subset_by_value=[-np.inf, 10])
array([6.69199443e-07, 9.11938152e+00])
Request the largest second eigenvalue and its eigenvector
>>> w, v = eigh(A, subset_by_index=[1, 1])
>>> w
array([9.11938152])
>>> v.shape # only a single column is returned
(5, 1)
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :