Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Calcul scientifique
avec Python
Voir le programme détaillé
Module « scipy.linalg »

Fonction lstsq - module scipy.linalg

Signature de la fonction lstsq

def lstsq(a, b, cond=None, overwrite_a=False, overwrite_b=False, check_finite=True, lapack_driver=None) 

Description

help(scipy.linalg.lstsq)

Compute least-squares solution to equation Ax = b.

Compute a vector x such that the 2-norm ``|b - A x|`` is minimized.

Parameters
----------
a : (M, N) array_like
    Left-hand side array
b : (M,) or (M, K) array_like
    Right hand side array
cond : float, optional
    Cutoff for 'small' singular values; used to determine effective
    rank of a. Singular values smaller than
    ``cond * largest_singular_value`` are considered zero.
overwrite_a : bool, optional
    Discard data in `a` (may enhance performance). Default is False.
overwrite_b : bool, optional
    Discard data in `b` (may enhance performance). Default is False.
check_finite : bool, optional
    Whether to check that the input matrices contain only finite numbers.
    Disabling may give a performance gain, but may result in problems
    (crashes, non-termination) if the inputs do contain infinities or NaNs.
lapack_driver : str, optional
    Which LAPACK driver is used to solve the least-squares problem.
    Options are ``'gelsd'``, ``'gelsy'``, ``'gelss'``. Default
    (``'gelsd'``) is a good choice.  However, ``'gelsy'`` can be slightly
    faster on many problems.  ``'gelss'`` was used historically.  It is
    generally slow but uses less memory.

    .. versionadded:: 0.17.0

Returns
-------
x : (N,) or (N, K) ndarray
    Least-squares solution.
residues : (K,) ndarray or float
    Square of the 2-norm for each column in ``b - a x``, if ``M > N`` and
    ``rank(A) == n`` (returns a scalar if ``b`` is 1-D). Otherwise a
    (0,)-shaped array is returned.
rank : int
    Effective rank of `a`.
s : (min(M, N),) ndarray or None
    Singular values of `a`. The condition number of ``a`` is
    ``s[0] / s[-1]``.

Raises
------
LinAlgError
    If computation does not converge.

ValueError
    When parameters are not compatible.

See Also
--------
scipy.optimize.nnls : linear least squares with non-negativity constraint

Notes
-----
When ``'gelsy'`` is used as a driver, `residues` is set to a (0,)-shaped
array and `s` is always ``None``.

Examples
--------
>>> import numpy as np
>>> from scipy.linalg import lstsq
>>> import matplotlib.pyplot as plt

Suppose we have the following data:

>>> x = np.array([1, 2.5, 3.5, 4, 5, 7, 8.5])
>>> y = np.array([0.3, 1.1, 1.5, 2.0, 3.2, 6.6, 8.6])

We want to fit a quadratic polynomial of the form ``y = a + b*x**2``
to this data.  We first form the "design matrix" M, with a constant
column of 1s and a column containing ``x**2``:

>>> M = x[:, np.newaxis]**[0, 2]
>>> M
array([[  1.  ,   1.  ],
       [  1.  ,   6.25],
       [  1.  ,  12.25],
       [  1.  ,  16.  ],
       [  1.  ,  25.  ],
       [  1.  ,  49.  ],
       [  1.  ,  72.25]])

We want to find the least-squares solution to ``M.dot(p) = y``,
where ``p`` is a vector with length 2 that holds the parameters
``a`` and ``b``.

>>> p, res, rnk, s = lstsq(M, y)
>>> p
array([ 0.20925829,  0.12013861])

Plot the data and the fitted curve.

>>> plt.plot(x, y, 'o', label='data')
>>> xx = np.linspace(0, 9, 101)
>>> yy = p[0] + p[1]*xx**2
>>> plt.plot(xx, yy, label='least squares fit, $y = a + bx^2$')
>>> plt.xlabel('x')
>>> plt.ylabel('y')
>>> plt.legend(framealpha=1, shadow=True)
>>> plt.grid(alpha=0.25)
>>> plt.show()



Vous êtes un professionnel et vous avez besoin d'une formation ? Coder avec une
Intelligence Artificielle
Voir le programme détaillé