Module « scipy.linalg »
Signature de la fonction matrix_balance
def matrix_balance(A, permute=True, scale=True, separate=False, overwrite_a=False)
Description
matrix_balance.__doc__
Compute a diagonal similarity transformation for row/column balancing.
The balancing tries to equalize the row and column 1-norms by applying
a similarity transformation such that the magnitude variation of the
matrix entries is reflected to the scaling matrices.
Moreover, if enabled, the matrix is first permuted to isolate the upper
triangular parts of the matrix and, again if scaling is also enabled,
only the remaining subblocks are subjected to scaling.
The balanced matrix satisfies the following equality
.. math::
B = T^{-1} A T
The scaling coefficients are approximated to the nearest power of 2
to avoid round-off errors.
Parameters
----------
A : (n, n) array_like
Square data matrix for the balancing.
permute : bool, optional
The selector to define whether permutation of A is also performed
prior to scaling.
scale : bool, optional
The selector to turn on and off the scaling. If False, the matrix
will not be scaled.
separate : bool, optional
This switches from returning a full matrix of the transformation
to a tuple of two separate 1-D permutation and scaling arrays.
overwrite_a : bool, optional
This is passed to xGEBAL directly. Essentially, overwrites the result
to the data. It might increase the space efficiency. See LAPACK manual
for details. This is False by default.
Returns
-------
B : (n, n) ndarray
Balanced matrix
T : (n, n) ndarray
A possibly permuted diagonal matrix whose nonzero entries are
integer powers of 2 to avoid numerical truncation errors.
scale, perm : (n,) ndarray
If ``separate`` keyword is set to True then instead of the array
``T`` above, the scaling and the permutation vectors are given
separately as a tuple without allocating the full array ``T``.
Notes
-----
This algorithm is particularly useful for eigenvalue and matrix
decompositions and in many cases it is already called by various
LAPACK routines.
The algorithm is based on the well-known technique of [1]_ and has
been modified to account for special cases. See [2]_ for details
which have been implemented since LAPACK v3.5.0. Before this version
there are corner cases where balancing can actually worsen the
conditioning. See [3]_ for such examples.
The code is a wrapper around LAPACK's xGEBAL routine family for matrix
balancing.
.. versionadded:: 0.19.0
Examples
--------
>>> from scipy import linalg
>>> x = np.array([[1,2,0], [9,1,0.01], [1,2,10*np.pi]])
>>> y, permscale = linalg.matrix_balance(x)
>>> np.abs(x).sum(axis=0) / np.abs(x).sum(axis=1)
array([ 3.66666667, 0.4995005 , 0.91312162])
>>> np.abs(y).sum(axis=0) / np.abs(y).sum(axis=1)
array([ 1.2 , 1.27041742, 0.92658316]) # may vary
>>> permscale # only powers of 2 (0.5 == 2^(-1))
array([[ 0.5, 0. , 0. ], # may vary
[ 0. , 1. , 0. ],
[ 0. , 0. , 1. ]])
References
----------
.. [1] : B.N. Parlett and C. Reinsch, "Balancing a Matrix for
Calculation of Eigenvalues and Eigenvectors", Numerische Mathematik,
Vol.13(4), 1969, :doi:`10.1007/BF02165404`
.. [2] : R. James, J. Langou, B.R. Lowery, "On matrix balancing and
eigenvector computation", 2014, :arxiv:`1401.5766`
.. [3] : D.S. Watkins. A case where balancing is harmful.
Electron. Trans. Numer. Anal, Vol.23, 2006.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :