Module « scipy.linalg »
Signature de la fonction invhilbert
def invhilbert(n, exact=False)
Description
invhilbert.__doc__
Compute the inverse of the Hilbert matrix of order `n`.
The entries in the inverse of a Hilbert matrix are integers. When `n`
is greater than 14, some entries in the inverse exceed the upper limit
of 64 bit integers. The `exact` argument provides two options for
dealing with these large integers.
Parameters
----------
n : int
The order of the Hilbert matrix.
exact : bool, optional
If False, the data type of the array that is returned is np.float64,
and the array is an approximation of the inverse.
If True, the array is the exact integer inverse array. To represent
the exact inverse when n > 14, the returned array is an object array
of long integers. For n <= 14, the exact inverse is returned as an
array with data type np.int64.
Returns
-------
invh : (n, n) ndarray
The data type of the array is np.float64 if `exact` is False.
If `exact` is True, the data type is either np.int64 (for n <= 14)
or object (for n > 14). In the latter case, the objects in the
array will be long integers.
See Also
--------
hilbert : Create a Hilbert matrix.
Notes
-----
.. versionadded:: 0.10.0
Examples
--------
>>> from scipy.linalg import invhilbert
>>> invhilbert(4)
array([[ 16., -120., 240., -140.],
[ -120., 1200., -2700., 1680.],
[ 240., -2700., 6480., -4200.],
[ -140., 1680., -4200., 2800.]])
>>> invhilbert(4, exact=True)
array([[ 16, -120, 240, -140],
[ -120, 1200, -2700, 1680],
[ 240, -2700, 6480, -4200],
[ -140, 1680, -4200, 2800]], dtype=int64)
>>> invhilbert(16)[7,7]
4.2475099528537506e+19
>>> invhilbert(16, exact=True)[7,7]
42475099528537378560
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :