Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.optimize »

Fonction show_options - module scipy.optimize

Signature de la fonction show_options

def show_options(solver=None, method=None, disp=True) 

Description

show_options.__doc__

    Show documentation for additional options of optimization solvers.

    These are method-specific options that can be supplied through the
    ``options`` dict.

    Parameters
    ----------
    solver : str
        Type of optimization solver. One of 'minimize', 'minimize_scalar',
        'root', 'root_scalar', 'linprog', or 'quadratic_assignment'.
    method : str, optional
        If not given, shows all methods of the specified solver. Otherwise,
        show only the options for the specified method. Valid values
        corresponds to methods' names of respective solver (e.g., 'BFGS' for
        'minimize').
    disp : bool, optional
        Whether to print the result rather than returning it.

    Returns
    -------
    text
        Either None (for disp=True) or the text string (disp=False)

    Notes
    -----
    The solver-specific methods are:

    `scipy.optimize.minimize`

    - :ref:`Nelder-Mead <optimize.minimize-neldermead>`
    - :ref:`Powell      <optimize.minimize-powell>`
    - :ref:`CG          <optimize.minimize-cg>`
    - :ref:`BFGS        <optimize.minimize-bfgs>`
    - :ref:`Newton-CG   <optimize.minimize-newtoncg>`
    - :ref:`L-BFGS-B    <optimize.minimize-lbfgsb>`
    - :ref:`TNC         <optimize.minimize-tnc>`
    - :ref:`COBYLA      <optimize.minimize-cobyla>`
    - :ref:`SLSQP       <optimize.minimize-slsqp>`
    - :ref:`dogleg      <optimize.minimize-dogleg>`
    - :ref:`trust-ncg   <optimize.minimize-trustncg>`

    `scipy.optimize.root`

    - :ref:`hybr              <optimize.root-hybr>`
    - :ref:`lm                <optimize.root-lm>`
    - :ref:`broyden1          <optimize.root-broyden1>`
    - :ref:`broyden2          <optimize.root-broyden2>`
    - :ref:`anderson          <optimize.root-anderson>`
    - :ref:`linearmixing      <optimize.root-linearmixing>`
    - :ref:`diagbroyden       <optimize.root-diagbroyden>`
    - :ref:`excitingmixing    <optimize.root-excitingmixing>`
    - :ref:`krylov            <optimize.root-krylov>`
    - :ref:`df-sane           <optimize.root-dfsane>`

    `scipy.optimize.minimize_scalar`

    - :ref:`brent       <optimize.minimize_scalar-brent>`
    - :ref:`golden      <optimize.minimize_scalar-golden>`
    - :ref:`bounded     <optimize.minimize_scalar-bounded>`

    `scipy.optimize.root_scalar`

    - :ref:`bisect  <optimize.root_scalar-bisect>`
    - :ref:`brentq  <optimize.root_scalar-brentq>`
    - :ref:`brenth  <optimize.root_scalar-brenth>`
    - :ref:`ridder  <optimize.root_scalar-ridder>`
    - :ref:`toms748 <optimize.root_scalar-toms748>`
    - :ref:`newton  <optimize.root_scalar-newton>`
    - :ref:`secant  <optimize.root_scalar-secant>`
    - :ref:`halley  <optimize.root_scalar-halley>`

    `scipy.optimize.linprog`

    - :ref:`simplex           <optimize.linprog-simplex>`
    - :ref:`interior-point    <optimize.linprog-interior-point>`
    - :ref:`revised simplex   <optimize.linprog-revised_simplex>`
    - :ref:`highs             <optimize.linprog-highs>`
    - :ref:`highs-ds          <optimize.linprog-highs-ds>`
    - :ref:`highs-ipm         <optimize.linprog-highs-ipm>`

    `scipy.optimize.quadratic_assignment`

    - :ref:`faq             <optimize.qap-faq>`
    - :ref:`2opt            <optimize.qap-2opt>`

    Examples
    --------
    We can print documentations of a solver in stdout:

    >>> from scipy.optimize import show_options
    >>> show_options(solver="minimize")
    ...

    Specifying a method is possible:

    >>> show_options(solver="minimize", method="Nelder-Mead")
    ...

    We can also get the documentations as a string:

    >>> show_options(solver="minimize", method="Nelder-Mead", disp=False)
    Minimization of scalar function of one or more variables using the ...