Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.optimize »

Fonction fmin_cg - module scipy.optimize

Signature de la fonction fmin_cg

def fmin_cg(f, x0, fprime=None, args=(), gtol=1e-05, norm=inf, epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1, retall=0, callback=None) 

Description

fmin_cg.__doc__

    Minimize a function using a nonlinear conjugate gradient algorithm.

    Parameters
    ----------
    f : callable, ``f(x, *args)``
        Objective function to be minimized. Here `x` must be a 1-D array of
        the variables that are to be changed in the search for a minimum, and
        `args` are the other (fixed) parameters of `f`.
    x0 : ndarray
        A user-supplied initial estimate of `xopt`, the optimal value of `x`.
        It must be a 1-D array of values.
    fprime : callable, ``fprime(x, *args)``, optional
        A function that returns the gradient of `f` at `x`. Here `x` and `args`
        are as described above for `f`. The returned value must be a 1-D array.
        Defaults to None, in which case the gradient is approximated
        numerically (see `epsilon`, below).
    args : tuple, optional
        Parameter values passed to `f` and `fprime`. Must be supplied whenever
        additional fixed parameters are needed to completely specify the
        functions `f` and `fprime`.
    gtol : float, optional
        Stop when the norm of the gradient is less than `gtol`.
    norm : float, optional
        Order to use for the norm of the gradient
        (``-np.Inf`` is min, ``np.Inf`` is max).
    epsilon : float or ndarray, optional
        Step size(s) to use when `fprime` is approximated numerically. Can be a
        scalar or a 1-D array. Defaults to ``sqrt(eps)``, with eps the
        floating point machine precision.  Usually ``sqrt(eps)`` is about
        1.5e-8.
    maxiter : int, optional
        Maximum number of iterations to perform. Default is ``200 * len(x0)``.
    full_output : bool, optional
        If True, return `fopt`, `func_calls`, `grad_calls`, and `warnflag` in
        addition to `xopt`.  See the Returns section below for additional
        information on optional return values.
    disp : bool, optional
        If True, return a convergence message, followed by `xopt`.
    retall : bool, optional
        If True, add to the returned values the results of each iteration.
    callback : callable, optional
        An optional user-supplied function, called after each iteration.
        Called as ``callback(xk)``, where ``xk`` is the current value of `x0`.

    Returns
    -------
    xopt : ndarray
        Parameters which minimize f, i.e., ``f(xopt) == fopt``.
    fopt : float, optional
        Minimum value found, f(xopt). Only returned if `full_output` is True.
    func_calls : int, optional
        The number of function_calls made. Only returned if `full_output`
        is True.
    grad_calls : int, optional
        The number of gradient calls made. Only returned if `full_output` is
        True.
    warnflag : int, optional
        Integer value with warning status, only returned if `full_output` is
        True.

        0 : Success.

        1 : The maximum number of iterations was exceeded.

        2 : Gradient and/or function calls were not changing. May indicate
            that precision was lost, i.e., the routine did not converge.

        3 : NaN result encountered.

    allvecs : list of ndarray, optional
        List of arrays, containing the results at each iteration.
        Only returned if `retall` is True.

    See Also
    --------
    minimize : common interface to all `scipy.optimize` algorithms for
               unconstrained and constrained minimization of multivariate
               functions. It provides an alternative way to call
               ``fmin_cg``, by specifying ``method='CG'``.

    Notes
    -----
    This conjugate gradient algorithm is based on that of Polak and Ribiere
    [1]_.

    Conjugate gradient methods tend to work better when:

    1. `f` has a unique global minimizing point, and no local minima or
       other stationary points,
    2. `f` is, at least locally, reasonably well approximated by a
       quadratic function of the variables,
    3. `f` is continuous and has a continuous gradient,
    4. `fprime` is not too large, e.g., has a norm less than 1000,
    5. The initial guess, `x0`, is reasonably close to `f` 's global
       minimizing point, `xopt`.

    References
    ----------
    .. [1] Wright & Nocedal, "Numerical Optimization", 1999, pp. 120-122.

    Examples
    --------
    Example 1: seek the minimum value of the expression
    ``a*u**2 + b*u*v + c*v**2 + d*u + e*v + f`` for given values
    of the parameters and an initial guess ``(u, v) = (0, 0)``.

    >>> args = (2, 3, 7, 8, 9, 10)  # parameter values
    >>> def f(x, *args):
    ...     u, v = x
    ...     a, b, c, d, e, f = args
    ...     return a*u**2 + b*u*v + c*v**2 + d*u + e*v + f
    >>> def gradf(x, *args):
    ...     u, v = x
    ...     a, b, c, d, e, f = args
    ...     gu = 2*a*u + b*v + d     # u-component of the gradient
    ...     gv = b*u + 2*c*v + e     # v-component of the gradient
    ...     return np.asarray((gu, gv))
    >>> x0 = np.asarray((0, 0))  # Initial guess.
    >>> from scipy import optimize
    >>> res1 = optimize.fmin_cg(f, x0, fprime=gradf, args=args)
    Optimization terminated successfully.
             Current function value: 1.617021
             Iterations: 4
             Function evaluations: 8
             Gradient evaluations: 8
    >>> res1
    array([-1.80851064, -0.25531915])

    Example 2: solve the same problem using the `minimize` function.
    (This `myopts` dictionary shows all of the available options,
    although in practice only non-default values would be needed.
    The returned value will be a dictionary.)

    >>> opts = {'maxiter' : None,    # default value.
    ...         'disp' : True,    # non-default value.
    ...         'gtol' : 1e-5,    # default value.
    ...         'norm' : np.inf,  # default value.
    ...         'eps' : 1.4901161193847656e-08}  # default value.
    >>> res2 = optimize.minimize(f, x0, jac=gradf, args=args,
    ...                          method='CG', options=opts)
    Optimization terminated successfully.
            Current function value: 1.617021
            Iterations: 4
            Function evaluations: 8
            Gradient evaluations: 8
    >>> res2.x  # minimum found
    array([-1.80851064, -0.25531915])