Module « scipy.optimize »
Signature de la fonction dual_annealing
def dual_annealing(func, bounds, args=(), maxiter=1000, local_search_options={}, initial_temp=5230.0, restart_temp_ratio=2e-05, visit=2.62, accept=-5.0, maxfun=10000000.0, seed=None, no_local_search=False, callback=None, x0=None)
Description
dual_annealing.__doc__
Find the global minimum of a function using Dual Annealing.
Parameters
----------
func : callable
The objective function to be minimized. Must be in the form
``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
and ``args`` is a tuple of any additional fixed parameters needed to
completely specify the function.
bounds : sequence, shape (n, 2)
Bounds for variables. ``(min, max)`` pairs for each element in ``x``,
defining bounds for the objective function parameter.
args : tuple, optional
Any additional fixed parameters needed to completely specify the
objective function.
maxiter : int, optional
The maximum number of global search iterations. Default value is 1000.
local_search_options : dict, optional
Extra keyword arguments to be passed to the local minimizer
(`minimize`). Some important options could be:
``method`` for the minimizer method to use and ``args`` for
objective function additional arguments.
initial_temp : float, optional
The initial temperature, use higher values to facilitates a wider
search of the energy landscape, allowing dual_annealing to escape
local minima that it is trapped in. Default value is 5230. Range is
(0.01, 5.e4].
restart_temp_ratio : float, optional
During the annealing process, temperature is decreasing, when it
reaches ``initial_temp * restart_temp_ratio``, the reannealing process
is triggered. Default value of the ratio is 2e-5. Range is (0, 1).
visit : float, optional
Parameter for visiting distribution. Default value is 2.62. Higher
values give the visiting distribution a heavier tail, this makes
the algorithm jump to a more distant region. The value range is (1, 3].
accept : float, optional
Parameter for acceptance distribution. It is used to control the
probability of acceptance. The lower the acceptance parameter, the
smaller the probability of acceptance. Default value is -5.0 with
a range (-1e4, -5].
maxfun : int, optional
Soft limit for the number of objective function calls. If the
algorithm is in the middle of a local search, this number will be
exceeded, the algorithm will stop just after the local search is
done. Default value is 1e7.
seed : {None, int, `numpy.random.Generator`,
`numpy.random.RandomState`}, optional
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
singleton is used.
If `seed` is an int, a new ``RandomState`` instance is used,
seeded with `seed`.
If `seed` is already a ``Generator`` or ``RandomState`` instance then
that instance is used.
Specify `seed` for repeatable minimizations. The random numbers
generated with this seed only affect the visiting distribution function
and new coordinates generation.
no_local_search : bool, optional
If `no_local_search` is set to True, a traditional Generalized
Simulated Annealing will be performed with no local search
strategy applied.
callback : callable, optional
A callback function with signature ``callback(x, f, context)``,
which will be called for all minima found.
``x`` and ``f`` are the coordinates and function value of the
latest minimum found, and ``context`` has value in [0, 1, 2], with the
following meaning:
- 0: minimum detected in the annealing process.
- 1: detection occurred in the local search process.
- 2: detection done in the dual annealing process.
If the callback implementation returns True, the algorithm will stop.
x0 : ndarray, shape(n,), optional
Coordinates of a single N-D starting point.
Returns
-------
res : OptimizeResult
The optimization result represented as a `OptimizeResult` object.
Important attributes are: ``x`` the solution array, ``fun`` the value
of the function at the solution, and ``message`` which describes the
cause of the termination.
See `OptimizeResult` for a description of other attributes.
Notes
-----
This function implements the Dual Annealing optimization. This stochastic
approach derived from [3]_ combines the generalization of CSA (Classical
Simulated Annealing) and FSA (Fast Simulated Annealing) [1]_ [2]_ coupled
to a strategy for applying a local search on accepted locations [4]_.
An alternative implementation of this same algorithm is described in [5]_
and benchmarks are presented in [6]_. This approach introduces an advanced
method to refine the solution found by the generalized annealing
process. This algorithm uses a distorted Cauchy-Lorentz visiting
distribution, with its shape controlled by the parameter :math:`q_{v}`
.. math::
g_{q_{v}}(\Delta x(t)) \propto \frac{ \
\left[T_{q_{v}}(t) \right]^{-\frac{D}{3-q_{v}}}}{ \
\left[{1+(q_{v}-1)\frac{(\Delta x(t))^{2}} { \
\left[T_{q_{v}}(t)\right]^{\frac{2}{3-q_{v}}}}}\right]^{ \
\frac{1}{q_{v}-1}+\frac{D-1}{2}}}
Where :math:`t` is the artificial time. This visiting distribution is used
to generate a trial jump distance :math:`\Delta x(t)` of variable
:math:`x(t)` under artificial temperature :math:`T_{q_{v}}(t)`.
From the starting point, after calling the visiting distribution
function, the acceptance probability is computed as follows:
.. math::
p_{q_{a}} = \min{\{1,\left[1-(1-q_{a}) \beta \Delta E \right]^{ \
\frac{1}{1-q_{a}}}\}}
Where :math:`q_{a}` is a acceptance parameter. For :math:`q_{a}<1`, zero
acceptance probability is assigned to the cases where
.. math::
[1-(1-q_{a}) \beta \Delta E] < 0
The artificial temperature :math:`T_{q_{v}}(t)` is decreased according to
.. math::
T_{q_{v}}(t) = T_{q_{v}}(1) \frac{2^{q_{v}-1}-1}{\left( \
1 + t\right)^{q_{v}-1}-1}
Where :math:`q_{v}` is the visiting parameter.
.. versionadded:: 1.2.0
References
----------
.. [1] Tsallis C. Possible generalization of Boltzmann-Gibbs
statistics. Journal of Statistical Physics, 52, 479-487 (1998).
.. [2] Tsallis C, Stariolo DA. Generalized Simulated Annealing.
Physica A, 233, 395-406 (1996).
.. [3] Xiang Y, Sun DY, Fan W, Gong XG. Generalized Simulated
Annealing Algorithm and Its Application to the Thomson Model.
Physics Letters A, 233, 216-220 (1997).
.. [4] Xiang Y, Gong XG. Efficiency of Generalized Simulated
Annealing. Physical Review E, 62, 4473 (2000).
.. [5] Xiang Y, Gubian S, Suomela B, Hoeng J. Generalized
Simulated Annealing for Efficient Global Optimization: the GenSA
Package for R. The R Journal, Volume 5/1 (2013).
.. [6] Mullen, K. Continuous Global Optimization in R. Journal of
Statistical Software, 60(6), 1 - 45, (2014).
:doi:`10.18637/jss.v060.i06`
Examples
--------
The following example is a 10-D problem, with many local minima.
The function involved is called Rastrigin
(https://en.wikipedia.org/wiki/Rastrigin_function)
>>> from scipy.optimize import dual_annealing
>>> func = lambda x: np.sum(x*x - 10*np.cos(2*np.pi*x)) + 10*np.size(x)
>>> lw = [-5.12] * 10
>>> up = [5.12] * 10
>>> ret = dual_annealing(func, bounds=list(zip(lw, up)))
>>> ret.x
array([-4.26437714e-09, -3.91699361e-09, -1.86149218e-09, -3.97165720e-09,
-6.29151648e-09, -6.53145322e-09, -3.93616815e-09, -6.55623025e-09,
-6.05775280e-09, -5.00668935e-09]) # random
>>> ret.fun
0.000000
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :