Module « scipy.optimize »
Signature de la fonction bracket
def bracket(func, xa=0.0, xb=1.0, args=(), grow_limit=110.0, maxiter=1000)
Description
bracket.__doc__
Bracket the minimum of the function.
Given a function and distinct initial points, search in the
downhill direction (as defined by the initial points) and return
new points xa, xb, xc that bracket the minimum of the function
f(xa) > f(xb) < f(xc). It doesn't always mean that obtained
solution will satisfy xa<=x<=xb.
Parameters
----------
func : callable f(x,*args)
Objective function to minimize.
xa, xb : float, optional
Bracketing interval. Defaults `xa` to 0.0, and `xb` to 1.0.
args : tuple, optional
Additional arguments (if present), passed to `func`.
grow_limit : float, optional
Maximum grow limit. Defaults to 110.0
maxiter : int, optional
Maximum number of iterations to perform. Defaults to 1000.
Returns
-------
xa, xb, xc : float
Bracket.
fa, fb, fc : float
Objective function values in bracket.
funcalls : int
Number of function evaluations made.
Examples
--------
This function can find a downward convex region of a function:
>>> import matplotlib.pyplot as plt
>>> from scipy.optimize import bracket
>>> def f(x):
... return 10*x**2 + 3*x + 5
>>> x = np.linspace(-2, 2)
>>> y = f(x)
>>> init_xa, init_xb = 0, 1
>>> xa, xb, xc, fa, fb, fc, funcalls = bracket(f, xa=init_xa, xb=init_xb)
>>> plt.axvline(x=init_xa, color="k", linestyle="--")
>>> plt.axvline(x=init_xb, color="k", linestyle="--")
>>> plt.plot(x, y, "-k")
>>> plt.plot(xa, fa, "bx")
>>> plt.plot(xb, fb, "rx")
>>> plt.plot(xc, fc, "bx")
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :