anderson(F, xin, iter=None, alpha=None, w0=0.01, M=5, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw) |
|
approx_fprime(xk, f, epsilon, *args) |
Finite-difference approximation of the gradient of a scalar function. [extrait de approx_fprime.__doc__] |
basinhopping(func, x0, niter=100, T=1.0, stepsize=0.5, minimizer_kwargs=None, take_step=None, accept_test=None, callback=None, interval=50, disp=False, niter_success=None, seed=None) |
Find the global minimum of a function using the basin-hopping algorithm. [extrait de basinhopping.__doc__] |
bisect(f, a, b, args=(), xtol=2e-12, rtol=8.881784197001252e-16, maxiter=100, full_output=False, disp=True) |
|
bracket(func, xa=0.0, xb=1.0, args=(), grow_limit=110.0, maxiter=1000) |
|
brent(func, args=(), brack=None, tol=1.48e-08, full_output=0, maxiter=500) |
|
brenth(f, a, b, args=(), xtol=2e-12, rtol=8.881784197001252e-16, maxiter=100, full_output=False, disp=True) |
Find a root of a function in a bracketing interval using Brent's [extrait de brenth.__doc__] |
brentq(f, a, b, args=(), xtol=2e-12, rtol=8.881784197001252e-16, maxiter=100, full_output=False, disp=True) |
|
broyden1(F, xin, iter=None, alpha=None, reduction_method='restart', max_rank=None, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw) |
|
broyden2(F, xin, iter=None, alpha=None, reduction_method='restart', max_rank=None, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw) |
|
brute(func, ranges, args=(), Ns=20, full_output=0, finish=<function fmin at 0x7f505a583ee0>, disp=False, workers=1) |
Minimize a function over a given range by brute force. [extrait de brute.__doc__] |
check_grad(func, grad, x0, *args, **kwargs) |
Check the correctness of a gradient function by comparing it against a [extrait de check_grad.__doc__] |
curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False, check_finite=True, bounds=(-inf, inf), method=None, jac=None, **kwargs) |
|
diagbroyden(F, xin, iter=None, alpha=None, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw) |
|
differential_evolution(func, bounds, args=(), strategy='best1bin', maxiter=1000, popsize=15, tol=0.01, mutation=(0.5, 1), recombination=0.7, seed=None, callback=None, disp=False, polish=True, init='latinhypercube', atol=0, updating='immediate', workers=1, constraints=(), x0=None) |
Finds the global minimum of a multivariate function. [extrait de differential_evolution.__doc__] |
dual_annealing(func, bounds, args=(), maxiter=1000, local_search_options={}, initial_temp=5230.0, restart_temp_ratio=2e-05, visit=2.62, accept=-5.0, maxfun=10000000.0, seed=None, no_local_search=False, callback=None, x0=None) |
|
excitingmixing(F, xin, iter=None, alpha=None, alphamax=1.0, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw) |
|
fixed_point(func, x0, args=(), xtol=1e-08, maxiter=500, method='del2') |
|
fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None, initial_simplex=None) |
|
fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-05, norm=inf, epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1, retall=0, callback=None) |
|
fmin_cg(f, x0, fprime=None, args=(), gtol=1e-05, norm=inf, epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1, retall=0, callback=None) |
|
fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0, rhoend=0.0001, maxfun=1000, disp=None, catol=0.0002) |
|
fmin_l_bfgs_b(func, x0, fprime=None, args=(), approx_grad=0, bounds=None, m=10, factr=10000000.0, pgtol=1e-05, epsilon=1e-08, iprint=-1, maxfun=15000, maxiter=15000, disp=None, callback=None, maxls=20) |
|
fmin_ncg(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1e-05, epsilon=1.4901161193847656e-08, maxiter=None, full_output=0, disp=1, retall=0, callback=None) |
|
fmin_powell(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None, direc=None) |
|
fmin_slsqp(func, x0, eqcons=(), f_eqcons=None, ieqcons=(), f_ieqcons=None, bounds=(), fprime=None, fprime_eqcons=None, fprime_ieqcons=None, args=(), iter=100, acc=1e-06, iprint=1, disp=None, full_output=0, epsilon=1.4901161193847656e-08, callback=None) |
|
fmin_tnc(func, x0, fprime=None, args=(), approx_grad=0, bounds=None, epsilon=1e-08, scale=None, offset=None, messages=15, maxCGit=-1, maxfun=None, eta=-1, stepmx=0, accuracy=0, fmin=0, ftol=-1, xtol=-1, pgtol=-1, rescale=-1, disp=None, callback=None) |
|
fminbound(func, x1, x2, args=(), xtol=1e-05, maxfun=500, full_output=0, disp=1) |
Bounded minimization for scalar functions. [extrait de fminbound.__doc__] |
fsolve(func, x0, args=(), fprime=None, full_output=0, col_deriv=0, xtol=1.49012e-08, maxfev=0, band=None, epsfcn=None, factor=100, diag=None) |
|
golden(func, args=(), brack=None, tol=1.4901161193847656e-08, full_output=0, maxiter=5000) |
|
least_squares(fun, x0, jac='2-point', bounds=(-inf, inf), method='trf', ftol=1e-08, xtol=1e-08, gtol=1e-08, x_scale=1.0, loss='linear', f_scale=1.0, diff_step=None, tr_solver=None, tr_options={}, jac_sparsity=None, max_nfev=None, verbose=0, args=(), kwargs={}) |
Solve a nonlinear least-squares problem with bounds on the variables. [extrait de least_squares.__doc__] |
leastsq(func, x0, args=(), Dfun=None, full_output=0, col_deriv=0, ftol=1.49012e-08, xtol=1.49012e-08, gtol=0.0, maxfev=0, epsfcn=None, factor=100, diag=None) |
|
linear_sum_assignment(cost_matrix, maximize=False) |
Solve the linear sum assignment problem. [extrait de linear_sum_assignment.__doc__] |
linearmixing(F, xin, iter=None, alpha=None, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw) |
|
linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='interior-point', callback=None, options=None, x0=None) |
|
linprog_verbose_callback(res) |
|
lsq_linear(A, b, bounds=(-inf, inf), method='trf', tol=1e-10, lsq_solver=None, lsmr_tol=None, max_iter=None, verbose=0) |
Solve a linear least-squares problem with bounds on the variables. [extrait de lsq_linear.__doc__] |
minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None) |
Minimization of scalar function of one or more variables. [extrait de minimize.__doc__] |
minimize_scalar(fun, bracket=None, bounds=None, args=(), method='brent', tol=None, options=None) |
Minimization of scalar function of one variable. [extrait de minimize_scalar.__doc__] |
newton(func, x0, fprime=None, args=(), tol=1.48e-08, maxiter=50, fprime2=None, x1=None, rtol=0.0, full_output=False, disp=True) |
|
newton_krylov(F, xin, iter=None, rdiff=None, method='lgmres', inner_maxiter=20, inner_M=None, outer_k=10, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw) |
|
nnls(A, b, maxiter=None) |
|
quadratic_assignment(A, B, method='faq', options=None) |
|
ridder(f, a, b, args=(), xtol=2e-12, rtol=8.881784197001252e-16, maxiter=100, full_output=False, disp=True) |
|
root(fun, x0, args=(), method='hybr', jac=None, tol=None, callback=None, options=None) |
|
root_scalar(f, args=(), method=None, bracket=None, fprime=None, fprime2=None, x0=None, x1=None, xtol=None, rtol=None, maxiter=None, options=None) |
|
rosen(x) |
|
rosen_der(x) |
|
rosen_hess(x) |
|
rosen_hess_prod(x, p) |
|
shgo(func, bounds, args=(), constraints=None, n=None, iters=1, callback=None, minimizer_kwargs=None, options=None, sampling_method='simplicial') |
|
show_options(solver=None, method=None, disp=True) |
|
test(label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, tests=None, parallel=None) |
|
toms748(f, a, b, args=(), k=1, xtol=2e-12, rtol=8.881784197001252e-16, maxiter=100, full_output=False, disp=True) |
|
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :