Vous êtes un professionnel et vous avez besoin d'une formation ?
Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Module « scipy.optimize »
Signature de la fonction brent
def brent(func, args=(), brack=None, tol=1.48e-08, full_output=0, maxiter=500)
Description
help(scipy.optimize.brent)
Given a function of one variable and a possible bracket, return
a local minimizer of the function isolated to a fractional precision
of tol.
Parameters
----------
func : callable f(x,*args)
Objective function.
args : tuple, optional
Additional arguments (if present).
brack : tuple, optional
Either a triple ``(xa, xb, xc)`` satisfying ``xa < xb < xc`` and
``func(xb) < func(xa) and func(xb) < func(xc)``, or a pair
``(xa, xb)`` to be used as initial points for a downhill bracket search
(see `scipy.optimize.bracket`).
The minimizer ``x`` will not necessarily satisfy ``xa <= x <= xb``.
tol : float, optional
Relative error in solution `xopt` acceptable for convergence.
full_output : bool, optional
If True, return all output args (xmin, fval, iter,
funcalls).
maxiter : int, optional
Maximum number of iterations in solution.
Returns
-------
xmin : ndarray
Optimum point.
fval : float
(Optional output) Optimum function value.
iter : int
(Optional output) Number of iterations.
funcalls : int
(Optional output) Number of objective function evaluations made.
See also
--------
minimize_scalar: Interface to minimization algorithms for scalar
univariate functions. See the 'Brent' `method` in particular.
Notes
-----
Uses inverse parabolic interpolation when possible to speed up
convergence of golden section method.
Does not ensure that the minimum lies in the range specified by
`brack`. See `scipy.optimize.fminbound`.
Examples
--------
We illustrate the behaviour of the function when `brack` is of
size 2 and 3 respectively. In the case where `brack` is of the
form ``(xa, xb)``, we can see for the given values, the output does
not necessarily lie in the range ``(xa, xb)``.
>>> def f(x):
... return (x-1)**2
>>> from scipy import optimize
>>> minimizer = optimize.brent(f, brack=(1, 2))
>>> minimizer
1
>>> res = optimize.brent(f, brack=(-1, 0.5, 2), full_output=True)
>>> xmin, fval, iter, funcalls = res
>>> f(xmin), fval
(0.0, 0.0)
Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les compléments
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :