Vous êtes un professionnel et vous avez besoin d'une formation ?
Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Module « scipy.optimize »
Signature de la fonction golden
def golden(func, args=(), brack=None, tol=np.float64(1.4901161193847656e-08), full_output=0, maxiter=5000)
Description
help(scipy.optimize.golden)
Return the minimizer of a function of one variable using the golden section
method.
Given a function of one variable and a possible bracketing interval,
return a minimizer of the function isolated to a fractional precision of
tol.
Parameters
----------
func : callable func(x,*args)
Objective function to minimize.
args : tuple, optional
Additional arguments (if present), passed to func.
brack : tuple, optional
Either a triple ``(xa, xb, xc)`` where ``xa < xb < xc`` and
``func(xb) < func(xa) and func(xb) < func(xc)``, or a pair (xa, xb)
to be used as initial points for a downhill bracket search (see
`scipy.optimize.bracket`).
The minimizer ``x`` will not necessarily satisfy ``xa <= x <= xb``.
tol : float, optional
x tolerance stop criterion
full_output : bool, optional
If True, return optional outputs.
maxiter : int
Maximum number of iterations to perform.
Returns
-------
xmin : ndarray
Optimum point.
fval : float
(Optional output) Optimum function value.
funcalls : int
(Optional output) Number of objective function evaluations made.
See also
--------
minimize_scalar: Interface to minimization algorithms for scalar
univariate functions. See the 'Golden' `method` in particular.
Notes
-----
Uses analog of bisection method to decrease the bracketed
interval.
Examples
--------
We illustrate the behaviour of the function when `brack` is of
size 2 and 3, respectively. In the case where `brack` is of the
form (xa,xb), we can see for the given values, the output need
not necessarily lie in the range ``(xa, xb)``.
>>> def f(x):
... return (x-1)**2
>>> from scipy import optimize
>>> minimizer = optimize.golden(f, brack=(1, 2))
>>> minimizer
1
>>> res = optimize.golden(f, brack=(-1, 0.5, 2), full_output=True)
>>> xmin, fval, funcalls = res
>>> f(xmin), fval
(9.925165290385052e-18, 9.925165290385052e-18)
Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les compléments
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :