Module « scipy.optimize »
Signature de la fonction fmin_powell
def fmin_powell(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None, direc=None)
Description
fmin_powell.__doc__
Minimize a function using modified Powell's method.
This method only uses function values, not derivatives.
Parameters
----------
func : callable f(x,*args)
Objective function to be minimized.
x0 : ndarray
Initial guess.
args : tuple, optional
Extra arguments passed to func.
xtol : float, optional
Line-search error tolerance.
ftol : float, optional
Relative error in ``func(xopt)`` acceptable for convergence.
maxiter : int, optional
Maximum number of iterations to perform.
maxfun : int, optional
Maximum number of function evaluations to make.
full_output : bool, optional
If True, ``fopt``, ``xi``, ``direc``, ``iter``, ``funcalls``, and
``warnflag`` are returned.
disp : bool, optional
If True, print convergence messages.
retall : bool, optional
If True, return a list of the solution at each iteration.
callback : callable, optional
An optional user-supplied function, called after each
iteration. Called as ``callback(xk)``, where ``xk`` is the
current parameter vector.
direc : ndarray, optional
Initial fitting step and parameter order set as an (N, N) array, where N
is the number of fitting parameters in `x0`. Defaults to step size 1.0
fitting all parameters simultaneously (``np.eye((N, N))``). To
prevent initial consideration of values in a step or to change initial
step size, set to 0 or desired step size in the Jth position in the Mth
block, where J is the position in `x0` and M is the desired evaluation
step, with steps being evaluated in index order. Step size and ordering
will change freely as minimization proceeds.
Returns
-------
xopt : ndarray
Parameter which minimizes `func`.
fopt : number
Value of function at minimum: ``fopt = func(xopt)``.
direc : ndarray
Current direction set.
iter : int
Number of iterations.
funcalls : int
Number of function calls made.
warnflag : int
Integer warning flag:
1 : Maximum number of function evaluations.
2 : Maximum number of iterations.
3 : NaN result encountered.
4 : The result is out of the provided bounds.
allvecs : list
List of solutions at each iteration.
See also
--------
minimize: Interface to unconstrained minimization algorithms for
multivariate functions. See the 'Powell' method in particular.
Notes
-----
Uses a modification of Powell's method to find the minimum of
a function of N variables. Powell's method is a conjugate
direction method.
The algorithm has two loops. The outer loop merely iterates over the inner
loop. The inner loop minimizes over each current direction in the direction
set. At the end of the inner loop, if certain conditions are met, the
direction that gave the largest decrease is dropped and replaced with the
difference between the current estimated x and the estimated x from the
beginning of the inner-loop.
The technical conditions for replacing the direction of greatest
increase amount to checking that
1. No further gain can be made along the direction of greatest increase
from that iteration.
2. The direction of greatest increase accounted for a large sufficient
fraction of the decrease in the function value from that iteration of
the inner loop.
References
----------
Powell M.J.D. (1964) An efficient method for finding the minimum of a
function of several variables without calculating derivatives,
Computer Journal, 7 (2):155-162.
Press W., Teukolsky S.A., Vetterling W.T., and Flannery B.P.:
Numerical Recipes (any edition), Cambridge University Press
Examples
--------
>>> def f(x):
... return x**2
>>> from scipy import optimize
>>> minimum = optimize.fmin_powell(f, -1)
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 2
Function evaluations: 18
>>> minimum
array(0.0)
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :