Module « scipy.optimize »
Signature de la fonction fmin_tnc
def fmin_tnc(func, x0, fprime=None, args=(), approx_grad=0, bounds=None, epsilon=1e-08, scale=None, offset=None, messages=15, maxCGit=-1, maxfun=None, eta=-1, stepmx=0, accuracy=0, fmin=0, ftol=-1, xtol=-1, pgtol=-1, rescale=-1, disp=None, callback=None)
Description
fmin_tnc.__doc__
Minimize a function with variables subject to bounds, using
gradient information in a truncated Newton algorithm. This
method wraps a C implementation of the algorithm.
Parameters
----------
func : callable ``func(x, *args)``
Function to minimize. Must do one of:
1. Return f and g, where f is the value of the function and g its
gradient (a list of floats).
2. Return the function value but supply gradient function
separately as `fprime`.
3. Return the function value and set ``approx_grad=True``.
If the function returns None, the minimization
is aborted.
x0 : array_like
Initial estimate of minimum.
fprime : callable ``fprime(x, *args)``, optional
Gradient of `func`. If None, then either `func` must return the
function value and the gradient (``f,g = func(x, *args)``)
or `approx_grad` must be True.
args : tuple, optional
Arguments to pass to function.
approx_grad : bool, optional
If true, approximate the gradient numerically.
bounds : list, optional
(min, max) pairs for each element in x0, defining the
bounds on that parameter. Use None or +/-inf for one of
min or max when there is no bound in that direction.
epsilon : float, optional
Used if approx_grad is True. The stepsize in a finite
difference approximation for fprime.
scale : array_like, optional
Scaling factors to apply to each variable. If None, the
factors are up-low for interval bounded variables and
1+|x| for the others. Defaults to None.
offset : array_like, optional
Value to subtract from each variable. If None, the
offsets are (up+low)/2 for interval bounded variables
and x for the others.
messages : int, optional
Bit mask used to select messages display during
minimization values defined in the MSGS dict. Defaults to
MGS_ALL.
disp : int, optional
Integer interface to messages. 0 = no message, 5 = all messages
maxCGit : int, optional
Maximum number of hessian*vector evaluations per main
iteration. If maxCGit == 0, the direction chosen is
-gradient if maxCGit < 0, maxCGit is set to
max(1,min(50,n/2)). Defaults to -1.
maxfun : int, optional
Maximum number of function evaluation. If None, maxfun is
set to max(100, 10*len(x0)). Defaults to None.
eta : float, optional
Severity of the line search. If < 0 or > 1, set to 0.25.
Defaults to -1.
stepmx : float, optional
Maximum step for the line search. May be increased during
call. If too small, it will be set to 10.0. Defaults to 0.
accuracy : float, optional
Relative precision for finite difference calculations. If
<= machine_precision, set to sqrt(machine_precision).
Defaults to 0.
fmin : float, optional
Minimum function value estimate. Defaults to 0.
ftol : float, optional
Precision goal for the value of f in the stopping criterion.
If ftol < 0.0, ftol is set to 0.0 defaults to -1.
xtol : float, optional
Precision goal for the value of x in the stopping
criterion (after applying x scaling factors). If xtol <
0.0, xtol is set to sqrt(machine_precision). Defaults to
-1.
pgtol : float, optional
Precision goal for the value of the projected gradient in
the stopping criterion (after applying x scaling factors).
If pgtol < 0.0, pgtol is set to 1e-2 * sqrt(accuracy).
Setting it to 0.0 is not recommended. Defaults to -1.
rescale : float, optional
Scaling factor (in log10) used to trigger f value
rescaling. If 0, rescale at each iteration. If a large
value, never rescale. If < 0, rescale is set to 1.3.
callback : callable, optional
Called after each iteration, as callback(xk), where xk is the
current parameter vector.
Returns
-------
x : ndarray
The solution.
nfeval : int
The number of function evaluations.
rc : int
Return code, see below
See also
--------
minimize: Interface to minimization algorithms for multivariate
functions. See the 'TNC' `method` in particular.
Notes
-----
The underlying algorithm is truncated Newton, also called
Newton Conjugate-Gradient. This method differs from
scipy.optimize.fmin_ncg in that
1. it wraps a C implementation of the algorithm
2. it allows each variable to be given an upper and lower bound.
The algorithm incorporates the bound constraints by determining
the descent direction as in an unconstrained truncated Newton,
but never taking a step-size large enough to leave the space
of feasible x's. The algorithm keeps track of a set of
currently active constraints, and ignores them when computing
the minimum allowable step size. (The x's associated with the
active constraint are kept fixed.) If the maximum allowable
step size is zero then a new constraint is added. At the end
of each iteration one of the constraints may be deemed no
longer active and removed. A constraint is considered
no longer active is if it is currently active
but the gradient for that variable points inward from the
constraint. The specific constraint removed is the one
associated with the variable of largest index whose
constraint is no longer active.
Return codes are defined as follows::
-1 : Infeasible (lower bound > upper bound)
0 : Local minimum reached (|pg| ~= 0)
1 : Converged (|f_n-f_(n-1)| ~= 0)
2 : Converged (|x_n-x_(n-1)| ~= 0)
3 : Max. number of function evaluations reached
4 : Linear search failed
5 : All lower bounds are equal to the upper bounds
6 : Unable to progress
7 : User requested end of minimization
References
----------
Wright S., Nocedal J. (2006), 'Numerical Optimization'
Nash S.G. (1984), "Newton-Type Minimization Via the Lanczos Method",
SIAM Journal of Numerical Analysis 21, pp. 770-778
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :