Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Module « scipy.optimize »
Signature de la fonction fminbound
def fminbound(func, x1, x2, args=(), xtol=1e-05, maxfun=500, full_output=0, disp=1)
Description
help(scipy.optimize.fminbound)
Bounded minimization for scalar functions.
Parameters
----------
func : callable f(x,*args)
Objective function to be minimized (must accept and return scalars).
x1, x2 : float or array scalar
Finite optimization bounds.
args : tuple, optional
Extra arguments passed to function.
xtol : float, optional
The convergence tolerance.
maxfun : int, optional
Maximum number of function evaluations allowed.
full_output : bool, optional
If True, return optional outputs.
disp: int, optional
If non-zero, print messages.
``0`` : no message printing.
``1`` : non-convergence notification messages only.
``2`` : print a message on convergence too.
``3`` : print iteration results.
Returns
-------
xopt : ndarray
Parameters (over given interval) which minimize the
objective function.
fval : number
(Optional output) The function value evaluated at the minimizer.
ierr : int
(Optional output) An error flag (0 if converged, 1 if maximum number of
function calls reached).
numfunc : int
(Optional output) The number of function calls made.
See also
--------
minimize_scalar: Interface to minimization algorithms for scalar
univariate functions. See the 'Bounded' `method` in particular.
Notes
-----
Finds a local minimizer of the scalar function `func` in the
interval x1 < xopt < x2 using Brent's method. (See `brent`
for auto-bracketing.)
References
----------
.. [1] Forsythe, G.E., M. A. Malcolm, and C. B. Moler. "Computer Methods
for Mathematical Computations." Prentice-Hall Series in Automatic
Computation 259 (1977).
.. [2] Brent, Richard P. Algorithms for Minimization Without Derivatives.
Courier Corporation, 2013.
Examples
--------
`fminbound` finds the minimizer of the function in the given range.
The following examples illustrate this.
>>> from scipy import optimize
>>> def f(x):
... return (x-1)**2
>>> minimizer = optimize.fminbound(f, -4, 4)
>>> minimizer
1.0
>>> minimum = f(minimizer)
>>> minimum
0.0
>>> res = optimize.fminbound(f, 3, 4, full_output=True)
>>> minimizer, fval, ierr, numfunc = res
>>> minimizer
3.000005960860986
>>> minimum = f(minimizer)
>>> minimum, fval
(4.000023843479476, 4.000023843479476)
Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :