Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « scipy.optimize »

Fonction fminbound - module scipy.optimize

Signature de la fonction fminbound

def fminbound(func, x1, x2, args=(), xtol=1e-05, maxfun=500, full_output=0, disp=1) 

Description

fminbound.__doc__

Bounded minimization for scalar functions.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function to be minimized (must accept and return scalars).
    x1, x2 : float or array scalar
        The optimization bounds.
    args : tuple, optional
        Extra arguments passed to function.
    xtol : float, optional
        The convergence tolerance.
    maxfun : int, optional
        Maximum number of function evaluations allowed.
    full_output : bool, optional
        If True, return optional outputs.
    disp : int, optional
        If non-zero, print messages.
            0 : no message printing.
            1 : non-convergence notification messages only.
            2 : print a message on convergence too.
            3 : print iteration results.


    Returns
    -------
    xopt : ndarray
        Parameters (over given interval) which minimize the
        objective function.
    fval : number
        The function value at the minimum point.
    ierr : int
        An error flag (0 if converged, 1 if maximum number of
        function calls reached).
    numfunc : int
      The number of function calls made.

    See also
    --------
    minimize_scalar: Interface to minimization algorithms for scalar
        univariate functions. See the 'Bounded' `method` in particular.

    Notes
    -----
    Finds a local minimizer of the scalar function `func` in the
    interval x1 < xopt < x2 using Brent's method. (See `brent`
    for auto-bracketing.)

    Examples
    --------
    `fminbound` finds the minimum of the function in the given range.
    The following examples illustrate the same

    >>> def f(x):
    ...     return x**2

    >>> from scipy import optimize

    >>> minimum = optimize.fminbound(f, -1, 2)
    >>> minimum
    0.0
    >>> minimum = optimize.fminbound(f, 1, 2)
    >>> minimum
    1.0000059608609866