Module « scipy.optimize »
Signature de la fonction root
def root(fun, x0, args=(), method='hybr', jac=None, tol=None, callback=None, options=None)
Description
root.__doc__
Find a root of a vector function.
Parameters
----------
fun : callable
A vector function to find a root of.
x0 : ndarray
Initial guess.
args : tuple, optional
Extra arguments passed to the objective function and its Jacobian.
method : str, optional
Type of solver. Should be one of
- 'hybr' :ref:`(see here) <optimize.root-hybr>`
- 'lm' :ref:`(see here) <optimize.root-lm>`
- 'broyden1' :ref:`(see here) <optimize.root-broyden1>`
- 'broyden2' :ref:`(see here) <optimize.root-broyden2>`
- 'anderson' :ref:`(see here) <optimize.root-anderson>`
- 'linearmixing' :ref:`(see here) <optimize.root-linearmixing>`
- 'diagbroyden' :ref:`(see here) <optimize.root-diagbroyden>`
- 'excitingmixing' :ref:`(see here) <optimize.root-excitingmixing>`
- 'krylov' :ref:`(see here) <optimize.root-krylov>`
- 'df-sane' :ref:`(see here) <optimize.root-dfsane>`
jac : bool or callable, optional
If `jac` is a Boolean and is True, `fun` is assumed to return the
value of Jacobian along with the objective function. If False, the
Jacobian will be estimated numerically.
`jac` can also be a callable returning the Jacobian of `fun`. In
this case, it must accept the same arguments as `fun`.
tol : float, optional
Tolerance for termination. For detailed control, use solver-specific
options.
callback : function, optional
Optional callback function. It is called on every iteration as
``callback(x, f)`` where `x` is the current solution and `f`
the corresponding residual. For all methods but 'hybr' and 'lm'.
options : dict, optional
A dictionary of solver options. E.g., `xtol` or `maxiter`, see
:obj:`show_options()` for details.
Returns
-------
sol : OptimizeResult
The solution represented as a ``OptimizeResult`` object.
Important attributes are: ``x`` the solution array, ``success`` a
Boolean flag indicating if the algorithm exited successfully and
``message`` which describes the cause of the termination. See
`OptimizeResult` for a description of other attributes.
See also
--------
show_options : Additional options accepted by the solvers
Notes
-----
This section describes the available solvers that can be selected by the
'method' parameter. The default method is *hybr*.
Method *hybr* uses a modification of the Powell hybrid method as
implemented in MINPACK [1]_.
Method *lm* solves the system of nonlinear equations in a least squares
sense using a modification of the Levenberg-Marquardt algorithm as
implemented in MINPACK [1]_.
Method *df-sane* is a derivative-free spectral method. [3]_
Methods *broyden1*, *broyden2*, *anderson*, *linearmixing*,
*diagbroyden*, *excitingmixing*, *krylov* are inexact Newton methods,
with backtracking or full line searches [2]_. Each method corresponds
to a particular Jacobian approximations. See `nonlin` for details.
- Method *broyden1* uses Broyden's first Jacobian approximation, it is
known as Broyden's good method.
- Method *broyden2* uses Broyden's second Jacobian approximation, it
is known as Broyden's bad method.
- Method *anderson* uses (extended) Anderson mixing.
- Method *Krylov* uses Krylov approximation for inverse Jacobian. It
is suitable for large-scale problem.
- Method *diagbroyden* uses diagonal Broyden Jacobian approximation.
- Method *linearmixing* uses a scalar Jacobian approximation.
- Method *excitingmixing* uses a tuned diagonal Jacobian
approximation.
.. warning::
The algorithms implemented for methods *diagbroyden*,
*linearmixing* and *excitingmixing* may be useful for specific
problems, but whether they will work may depend strongly on the
problem.
.. versionadded:: 0.11.0
References
----------
.. [1] More, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom.
1980. User Guide for MINPACK-1.
.. [2] C. T. Kelley. 1995. Iterative Methods for Linear and Nonlinear
Equations. Society for Industrial and Applied Mathematics.
<https://archive.siam.org/books/kelley/fr16/>
.. [3] W. La Cruz, J.M. Martinez, M. Raydan. Math. Comp. 75, 1429 (2006).
Examples
--------
The following functions define a system of nonlinear equations and its
jacobian.
>>> def fun(x):
... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0,
... 0.5 * (x[1] - x[0])**3 + x[1]]
>>> def jac(x):
... return np.array([[1 + 1.5 * (x[0] - x[1])**2,
... -1.5 * (x[0] - x[1])**2],
... [-1.5 * (x[1] - x[0])**2,
... 1 + 1.5 * (x[1] - x[0])**2]])
A solution can be obtained as follows.
>>> from scipy import optimize
>>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr')
>>> sol.x
array([ 0.8411639, 0.1588361])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :