Vous êtes un professionnel et vous avez besoin d'une formation ?
Calcul scientifique
avec Python
Voir le programme détaillé
Module « scipy.optimize »
Signature de la fonction root_scalar
def root_scalar(f, args=(), method=None, bracket=None, fprime=None, fprime2=None, x0=None, x1=None, xtol=None, rtol=None, maxiter=None, options=None)
Description
help(scipy.optimize.root_scalar)
Find a root of a scalar function.
Parameters
----------
f : callable
A function to find a root of.
Suppose the callable has signature ``f0(x, *my_args, **my_kwargs)``, where
``my_args`` and ``my_kwargs`` are required positional and keyword arguments.
Rather than passing ``f0`` as the callable, wrap it to accept
only ``x``; e.g., pass ``fun=lambda x: f0(x, *my_args, **my_kwargs)`` as the
callable, where ``my_args`` (tuple) and ``my_kwargs`` (dict) have been
gathered before invoking this function.
args : tuple, optional
Extra arguments passed to the objective function and its derivative(s).
method : str, optional
Type of solver. Should be one of
- 'bisect' :ref:`(see here) <optimize.root_scalar-bisect>`
- 'brentq' :ref:`(see here) <optimize.root_scalar-brentq>`
- 'brenth' :ref:`(see here) <optimize.root_scalar-brenth>`
- 'ridder' :ref:`(see here) <optimize.root_scalar-ridder>`
- 'toms748' :ref:`(see here) <optimize.root_scalar-toms748>`
- 'newton' :ref:`(see here) <optimize.root_scalar-newton>`
- 'secant' :ref:`(see here) <optimize.root_scalar-secant>`
- 'halley' :ref:`(see here) <optimize.root_scalar-halley>`
bracket: A sequence of 2 floats, optional
An interval bracketing a root. ``f(x, *args)`` must have different
signs at the two endpoints.
x0 : float, optional
Initial guess.
x1 : float, optional
A second guess.
fprime : bool or callable, optional
If `fprime` is a boolean and is True, `f` is assumed to return the
value of the objective function and of the derivative.
`fprime` can also be a callable returning the derivative of `f`. In
this case, it must accept the same arguments as `f`.
fprime2 : bool or callable, optional
If `fprime2` is a boolean and is True, `f` is assumed to return the
value of the objective function and of the
first and second derivatives.
`fprime2` can also be a callable returning the second derivative of `f`.
In this case, it must accept the same arguments as `f`.
xtol : float, optional
Tolerance (absolute) for termination.
rtol : float, optional
Tolerance (relative) for termination.
maxiter : int, optional
Maximum number of iterations.
options : dict, optional
A dictionary of solver options. E.g., ``k``, see
:obj:`show_options()` for details.
Returns
-------
sol : RootResults
The solution represented as a ``RootResults`` object.
Important attributes are: ``root`` the solution , ``converged`` a
boolean flag indicating if the algorithm exited successfully and
``flag`` which describes the cause of the termination. See
`RootResults` for a description of other attributes.
See also
--------
show_options : Additional options accepted by the solvers
root : Find a root of a vector function.
Notes
-----
This section describes the available solvers that can be selected by the
'method' parameter.
The default is to use the best method available for the situation
presented.
If a bracket is provided, it may use one of the bracketing methods.
If a derivative and an initial value are specified, it may
select one of the derivative-based methods.
If no method is judged applicable, it will raise an Exception.
Arguments for each method are as follows (x=required, o=optional).
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
| method | f | args | bracket | x0 | x1 | fprime | fprime2 | xtol | rtol | maxiter | options |
+===============================================+===+======+=========+====+====+========+=========+======+======+=========+=========+
| :ref:`bisect <optimize.root_scalar-bisect>` | x | o | x | | | | | o | o | o | o |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
| :ref:`brentq <optimize.root_scalar-brentq>` | x | o | x | | | | | o | o | o | o |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
| :ref:`brenth <optimize.root_scalar-brenth>` | x | o | x | | | | | o | o | o | o |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
| :ref:`ridder <optimize.root_scalar-ridder>` | x | o | x | | | | | o | o | o | o |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
| :ref:`toms748 <optimize.root_scalar-toms748>` | x | o | x | | | | | o | o | o | o |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
| :ref:`secant <optimize.root_scalar-secant>` | x | o | | x | o | | | o | o | o | o |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
| :ref:`newton <optimize.root_scalar-newton>` | x | o | | x | | o | | o | o | o | o |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
| :ref:`halley <optimize.root_scalar-halley>` | x | o | | x | | x | x | o | o | o | o |
+-----------------------------------------------+---+------+---------+----+----+--------+---------+------+------+---------+---------+
Examples
--------
Find the root of a simple cubic
>>> from scipy import optimize
>>> def f(x):
... return (x**3 - 1) # only one real root at x = 1
>>> def fprime(x):
... return 3*x**2
The `brentq` method takes as input a bracket
>>> sol = optimize.root_scalar(f, bracket=[0, 3], method='brentq')
>>> sol.root, sol.iterations, sol.function_calls
(1.0, 10, 11)
The `newton` method takes as input a single point and uses the
derivative(s).
>>> sol = optimize.root_scalar(f, x0=0.2, fprime=fprime, method='newton')
>>> sol.root, sol.iterations, sol.function_calls
(1.0, 11, 22)
The function can provide the value and derivative(s) in a single call.
>>> def f_p_pp(x):
... return (x**3 - 1), 3*x**2, 6*x
>>> sol = optimize.root_scalar(
... f_p_pp, x0=0.2, fprime=True, method='newton'
... )
>>> sol.root, sol.iterations, sol.function_calls
(1.0, 11, 11)
>>> sol = optimize.root_scalar(
... f_p_pp, x0=0.2, fprime=True, fprime2=True, method='halley'
... )
>>> sol.root, sol.iterations, sol.function_calls
(1.0, 7, 8)
Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :