Module « scipy.optimize »
Signature de la fonction brentq
def brentq(f, a, b, args=(), xtol=2e-12, rtol=8.881784197001252e-16, maxiter=100, full_output=False, disp=True)
Description
brentq.__doc__
Find a root of a function in a bracketing interval using Brent's method.
Uses the classic Brent's method to find a zero of the function `f` on
the sign changing interval [a , b]. Generally considered the best of the
rootfinding routines here. It is a safe version of the secant method that
uses inverse quadratic extrapolation. Brent's method combines root
bracketing, interval bisection, and inverse quadratic interpolation. It is
sometimes known as the van Wijngaarden-Dekker-Brent method. Brent (1973)
claims convergence is guaranteed for functions computable within [a,b].
[Brent1973]_ provides the classic description of the algorithm. Another
description can be found in a recent edition of Numerical Recipes, including
[PressEtal1992]_. A third description is at
http://mathworld.wolfram.com/BrentsMethod.html. It should be easy to
understand the algorithm just by reading our code. Our code diverges a bit
from standard presentations: we choose a different formula for the
extrapolation step.
Parameters
----------
f : function
Python function returning a number. The function :math:`f`
must be continuous, and :math:`f(a)` and :math:`f(b)` must
have opposite signs.
a : scalar
One end of the bracketing interval :math:`[a, b]`.
b : scalar
The other end of the bracketing interval :math:`[a, b]`.
xtol : number, optional
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
parameter must be nonnegative. For nice functions, Brent's
method will often satisfy the above condition with ``xtol/2``
and ``rtol/2``. [Brent1973]_
rtol : number, optional
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
parameter cannot be smaller than its default value of
``4*np.finfo(float).eps``. For nice functions, Brent's
method will often satisfy the above condition with ``xtol/2``
and ``rtol/2``. [Brent1973]_
maxiter : int, optional
If convergence is not achieved in `maxiter` iterations, an error is
raised. Must be >= 0.
args : tuple, optional
Containing extra arguments for the function `f`.
`f` is called by ``apply(f, (x)+args)``.
full_output : bool, optional
If `full_output` is False, the root is returned. If `full_output` is
True, the return value is ``(x, r)``, where `x` is the root, and `r` is
a `RootResults` object.
disp : bool, optional
If True, raise RuntimeError if the algorithm didn't converge.
Otherwise, the convergence status is recorded in any `RootResults`
return object.
Returns
-------
x0 : float
Zero of `f` between `a` and `b`.
r : `RootResults` (present if ``full_output = True``)
Object containing information about the convergence. In particular,
``r.converged`` is True if the routine converged.
Notes
-----
`f` must be continuous. f(a) and f(b) must have opposite signs.
Related functions fall into several classes:
multivariate local optimizers
`fmin`, `fmin_powell`, `fmin_cg`, `fmin_bfgs`, `fmin_ncg`
nonlinear least squares minimizer
`leastsq`
constrained multivariate optimizers
`fmin_l_bfgs_b`, `fmin_tnc`, `fmin_cobyla`
global optimizers
`basinhopping`, `brute`, `differential_evolution`
local scalar minimizers
`fminbound`, `brent`, `golden`, `bracket`
N-D root-finding
`fsolve`
1-D root-finding
`brenth`, `ridder`, `bisect`, `newton`
scalar fixed-point finder
`fixed_point`
References
----------
.. [Brent1973]
Brent, R. P.,
*Algorithms for Minimization Without Derivatives*.
Englewood Cliffs, NJ: Prentice-Hall, 1973. Ch. 3-4.
.. [PressEtal1992]
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.
*Numerical Recipes in FORTRAN: The Art of Scientific Computing*, 2nd ed.
Cambridge, England: Cambridge University Press, pp. 352-355, 1992.
Section 9.3: "Van Wijngaarden-Dekker-Brent Method."
Examples
--------
>>> def f(x):
... return (x**2 - 1)
>>> from scipy import optimize
>>> root = optimize.brentq(f, -2, 0)
>>> root
-1.0
>>> root = optimize.brentq(f, 0, 2)
>>> root
1.0
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :