Module « scipy.ndimage »
Signature de la fonction zoom
def zoom(input, zoom, output=None, order=3, mode='constant', cval=0.0, prefilter=True, *, grid_mode=False)
Description
zoom.__doc__
Zoom an array.
The array is zoomed using spline interpolation of the requested order.
Parameters
----------
input : array_like
The input array.
zoom : float or sequence
The zoom factor along the axes. If a float, `zoom` is the same for each
axis. If a sequence, `zoom` should contain one value for each axis.
output : array or dtype, optional
The array in which to place the output, or the dtype of the
returned array. By default an array of the same dtype as input
will be created.
order : int, optional
The order of the spline interpolation, default is 3.
The order has to be in the range 0-5.
mode : {'reflect', 'grid-mirror', 'constant', 'grid-constant', 'nearest', 'mirror', 'grid-wrap', 'wrap'}, optional
The `mode` parameter determines how the input array is extended
beyond its boundaries. Default is 'constant'. Behavior for each valid
value is as follows (see additional plots and details on
:ref:`boundary modes <ndimage-interpolation-modes>`):
'reflect' (`d c b a | a b c d | d c b a`)
The input is extended by reflecting about the edge of the last
pixel. This mode is also sometimes referred to as half-sample
symmetric.
'grid-mirror'
This is a synonym for 'reflect'.
'constant' (`k k k k | a b c d | k k k k`)
The input is extended by filling all values beyond the edge with
the same constant value, defined by the `cval` parameter. No
interpolation is performed beyond the edges of the input.
'grid-constant' (`k k k k | a b c d | k k k k`)
The input is extended by filling all values beyond the edge with
the same constant value, defined by the `cval` parameter. Interpolation
occurs for samples outside the input's extent as well.
'nearest' (`a a a a | a b c d | d d d d`)
The input is extended by replicating the last pixel.
'mirror' (`d c b | a b c d | c b a`)
The input is extended by reflecting about the center of the last
pixel. This mode is also sometimes referred to as whole-sample
symmetric.
'grid-wrap' (`a b c d | a b c d | a b c d`)
The input is extended by wrapping around to the opposite edge.
'wrap' (`d b c d | a b c d | b c a b`)
The input is extended by wrapping around to the opposite edge, but in a
way such that the last point and initial point exactly overlap. In this
case it is not well defined which sample will be chosen at the point of
overlap.
cval : scalar, optional
Value to fill past edges of input if `mode` is 'constant'. Default
is 0.0.
prefilter : bool, optional
Determines if the input array is prefiltered with `spline_filter`
before interpolation. The default is True, which will create a
temporary `float64` array of filtered values if `order > 1`. If
setting this to False, the output will be slightly blurred if
`order > 1`, unless the input is prefiltered, i.e. it is the result
of calling `spline_filter` on the original input.
grid_mode : bool, optional
If False, the distance from the pixel centers is zoomed. Otherwise, the
distance including the full pixel extent is used. For example, a 1d
signal of length 5 is considered to have length 4 when `grid_mode` is
False, but length 5 when `grid_mode` is True. See the following
visual illustration:
.. code-block:: text
| pixel 1 | pixel 2 | pixel 3 | pixel 4 | pixel 5 |
|<-------------------------------------->|
vs.
|<----------------------------------------------->|
The starting point of the arrow in the diagram above corresponds to
coordinate location 0 in each mode.
Returns
-------
zoom : ndarray
The zoomed input.
Notes
-----
For complex-valued `input`, this function zooms the real and imaginary
components independently.
.. versionadded:: 1.6.0
Complex-valued support added.
Examples
--------
>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = misc.ascent()
>>> result = ndimage.zoom(ascent, 3.0)
>>> ax1.imshow(ascent, vmin=0, vmax=255)
>>> ax2.imshow(result, vmin=0, vmax=255)
>>> plt.show()
>>> print(ascent.shape)
(512, 512)
>>> print(result.shape)
(1536, 1536)
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :