Module « scipy.ndimage »
Signature de la fonction gaussian_filter1d
def gaussian_filter1d(input, sigma, axis=-1, order=0, output=None, mode='reflect', cval=0.0, truncate=4.0)
Description
gaussian_filter1d.__doc__
1-D Gaussian filter.
Parameters
----------
input : array_like
The input array.
sigma : scalar
standard deviation for Gaussian kernel
axis : int, optional
The axis of `input` along which to calculate. Default is -1.
order : int, optional
An order of 0 corresponds to convolution with a Gaussian
kernel. A positive order corresponds to convolution with
that derivative of a Gaussian.
output : array or dtype, optional
The array in which to place the output, or the dtype of the
returned array. By default an array of the same dtype as input
will be created.
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
The `mode` parameter determines how the input array is extended
beyond its boundaries. Default is 'reflect'. Behavior for each valid
value is as follows:
'reflect' (`d c b a | a b c d | d c b a`)
The input is extended by reflecting about the edge of the last
pixel. This mode is also sometimes referred to as half-sample
symmetric.
'constant' (`k k k k | a b c d | k k k k`)
The input is extended by filling all values beyond the edge with
the same constant value, defined by the `cval` parameter.
'nearest' (`a a a a | a b c d | d d d d`)
The input is extended by replicating the last pixel.
'mirror' (`d c b | a b c d | c b a`)
The input is extended by reflecting about the center of the last
pixel. This mode is also sometimes referred to as whole-sample
symmetric.
'wrap' (`a b c d | a b c d | a b c d`)
The input is extended by wrapping around to the opposite edge.
For consistency with the interpolation functions, the following mode
names can also be used:
'grid-mirror'
This is a synonym for 'reflect'.
'grid-constant'
This is a synonym for 'constant'.
'grid-wrap'
This is a synonym for 'wrap'.
cval : scalar, optional
Value to fill past edges of input if `mode` is 'constant'. Default
is 0.0.
truncate : float, optional
Truncate the filter at this many standard deviations.
Default is 4.0.
Returns
-------
gaussian_filter1d : ndarray
Examples
--------
>>> from scipy.ndimage import gaussian_filter1d
>>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 1)
array([ 1.42704095, 2.06782203, 3. , 3.93217797, 4.57295905])
>>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 4)
array([ 2.91948343, 2.95023502, 3. , 3.04976498, 3.08051657])
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> x = rng.standard_normal(101).cumsum()
>>> y3 = gaussian_filter1d(x, 3)
>>> y6 = gaussian_filter1d(x, 6)
>>> plt.plot(x, 'k', label='original data')
>>> plt.plot(y3, '--', label='filtered, sigma=3')
>>> plt.plot(y6, ':', label='filtered, sigma=6')
>>> plt.legend()
>>> plt.grid()
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :